...
首页> 外文期刊>AIAA Journal >Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
【24h】

Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

机译:高超声速流中的气动弹性和气动热弹性行为

获取原文
获取原文并翻译 | 示例
           

摘要

The testing of aeroelastically and aerothermoelastically scaled wind-tunnel models in hypersonic flow is not feasible; thus, computational aeroelasticity and aerothermoelasticity are essential to the development of hypersonic vehicles. Several fundamental issues in this area are examined by performing a systematic computational study of the hypersonic aeroelastic and aerothermoelastic behavior of a three-dimensional configuration. Specifically, the flutter boundary of a low-aspect-ratio wing, representative of a fin or control surface on a hypersonic vehicle, is studied over a range of altitudes using third-order piston theory and Euler and Navier-Stokes aerodynamics. The sensitivity of the computational-fluid-dynamics-based aeroelastic analysis to grid resolution and parameters governing temporal accuracy are considered. In general, good agreement at moderate-to-high altitudes was observed for the three aerodynamic models. However, the wing flutters at unrealistic Mach numbers in the absence of aerodynamic heating. Therefore, because aerodynamic heating is an inherent feature of hypersonic flight and the aeroelastic behavior of a vehicle is sensitive to structural variations caused by heating, an aerothermoelastic methodology is developed that incorporates the heat transfer between the fluid and structure based on computational-fluid-dynamics-generated aerodynamic heating. The aerothermoelastic solution procedure is then applied to the low-aspect-ratio wing operating on a representative hypersonic trajectory. In the latter study, the sensitivity of the flutter margin to perturbations in trajectory angle of attack and Mach number is considered. Significant reductions in the flutter boundary of the heated wing are observed. The wing is also found to be susceptible to thermal buckling.
机译:在高超声速流中测试气动和气动-弹性比例风洞模型是不可行的。因此,计算气动弹性和气动热弹性对于超音速飞行器的发展至关重要。通过对三维结构的高超声速气动弹性和气动弹性行为进行系统的计算研究,研究了该领域中的几个基本问​​题。具体而言,使用三阶活塞理论以及欧拉和纳维尔-斯托克斯空气动力学技术,研究了低纵横比机翼的颤动边界,该机翼代表高超音速飞行器的鳍或控制面,在整个高度范围内。考虑了基于计算流体动力学的气动弹性分析对网格分辨率和控制时间精度的参数的敏感性。通常,对于三种空气动力学模型,在中高海拔地区都观察到良好的一致性。但是,在没有空气动力加热的情况下,机翼以不切实际的马赫数拍动。因此,由于气动加热是超音速飞行的固有特征,并且车辆的气动弹性行为对由加热引起的结构变化敏感,因此开发了一种气动热弹性方法,该方法基于计算流体动力学将流体与结构之间的传热结合在一起。产生的空气动力学加热。然后,将气动弹性解决方案应用于在具有代表性的高超音速轨迹上运行的低纵横比机翼。在后一研究中,考虑了颤动裕度对轨迹攻角和马赫数扰动的敏感性。观察到加热机翼的颤振边界明显减小。还发现机翼容易发生热屈曲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号