...
首页> 外文期刊>Advanced Functional Materials >Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane)
【24h】

Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane)

机译:集成了导电碳纳米管/石墨烯网络和3D多孔聚二甲基硅氧烷的高拉伸导体

获取原文
获取原文并翻译 | 示例
           

摘要

Here, a novel and facile method is reported for manufacturing a new stretch-able conductive material that integrates a hybrid three dimensional (3D) carbon nanotube (CNT)/reduced graphene oxide (rGO) network with a porous poly(dimethylsiloxane) (p-PDMS) elastomer (pPCG). This reciprocal architecture not only alleviates the aggregation of carbon nanofillers but also significantly improves the conductivity of pPCG under large strains. Consequently, the pPCG exhibits high electrical conductivity with a low nanofiller loading (27 S m~(-1) with 2 wt% CNTs/graphene) and a notable retention capability after bending and stretching. The simulation of the mechanical properties of the p-PDMS model demonstrates that an extremely large applied strain (ε_(appl)) can be accommodated through local rotations and bending of cell walls. Thus, after a slight decrease, the conductivity of pPCG can continue to remain constant even as the strain increases to 50%. In general, this architecture of pPCG with a combination of a porous polymer substrate and 3D carbon nanofiller network possesses considerable potential for numerous applications in next-generation stretchable electronics.
机译:在这里,报道了一种新颖且简便的方法来制造一种新的可拉伸导电材料,该材料将混合三维(3D)碳纳米管(CNT)/还原氧化石墨烯(rGO)网络与多孔聚二甲基硅氧烷(p- PDMS)弹性体(pPCG)。这种互惠的架构不仅减轻了碳纳米填料的聚集,而且还显着提高了大菌株下pPCG的电导率。因此,pPCG表现出高的电导率和低的纳米填料填充量(具有2 wt%的CNTs /石墨烯的27 S m〜(-1)),并且在弯曲和拉伸后具有显着的保持能力。对p-PDMS模型的力学性能的仿真表明,可以通过局部旋转和细胞壁弯曲来适应极大的外加应变(ε_(appl))。因此,在稍微降低之后,即使应变增加到50%,pPCG的电导率也可以继续保持恒定。通常,结合了多孔聚合物基材和3D碳纳米填料网络的pPCG体系结构在下一代可拉伸电子产品的众多应用中具有巨大的潜力。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第47期|7548-7556|共9页
  • 作者单位

    Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, P. R. China;

    Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, P. R. China;

    Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, P. R. China;

    Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, P. R. China;

    Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, P. R. China;

    Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号