首页> 美国卫生研究院文献>Springer Open Choice >Transitions between asynchronous and synchronous states: a theory of correlations in small neural circuits
【2h】

Transitions between asynchronous and synchronous states: a theory of correlations in small neural circuits

机译:异步和同步状态之间的转换:小型神经电路中的相关理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of correlations in neural circuits of different size, from the small size of cortical microcolumns to the large-scale organization of distributed networks studied with functional imaging, is a topic of central importance to systems neuroscience. However, a theory that explains how the parameters of mesoscopic networks composed of a few tens of neurons affect the underlying correlation structure is still missing. Here we consider a theory that can be applied to networks of arbitrary size with multiple populations of homogeneous fully-connected neurons, and we focus its analysis to a case of two populations of small size. We combine the analysis of local bifurcations of the dynamics of these networks with the analytical calculation of their cross-correlations. We study the correlation structure in different regimes, showing that a variation of the external stimuli causes the network to switch from asynchronous states, characterized by weak correlation and low variability, to synchronous states characterized by strong correlations and wide temporal fluctuations. We show that asynchronous states are generated by strong stimuli, while synchronous states occur through critical slowing down when the stimulus moves the network close to a local bifurcation. In particular, strongly positive correlations occur at the saddle-node and Andronov-Hopf bifurcations of the network, while strongly negative correlations occur when the network undergoes a spontaneous symmetry-breaking at the branching-point bifurcations. These results show how the correlation structure of firing-rate network models is strongly modulated by the external stimuli, even keeping the anatomical connections fixed. These results also suggest an effective mechanism through which biological networks may dynamically modulate the encoding and integration of sensory information.Electronic supplementary materialThe online version of this article (10.1007/s10827-017-0667-3) contains supplementary material, which is available to authorized users.
机译:从皮质微柱的小尺寸到功能成像研究的分布式网络的大规模组织,不同尺寸的神经回路的相关性研究是系统神经科学的重要课题。但是,仍然缺少一种理论来解释由几十个神经元组成的介观网络的参数如何影响潜在的相关结构。在这里,我们考虑一种理论,该理论可以应用于具有均一的完全连接神经元的多个种群的任意大小的网络,并且我们将其分析重点放在两个小种群的情况下。我们将这些网络的动力学局部分支的分析与它们的互相关的分析计算相结合。我们研究了不同状态下的相关结构,表明外部刺激的变化会导致网络从具有弱相关性和低可变性的异步状态切换到具有强相关性和较大时间波动的同步状态。我们表明,异步状态是由强烈的刺激产生的,而同步状态则是在刺激使网络靠近局部分支时,通过临界减速而发生的。特别是,在网络的鞍形节点和Andronov-Hopf分叉处出现强正相关,而在网络在分支点分叉处发生自发对称破坏时,则出现强负相关。这些结果表明,即使保持解剖学连接固定,激发速率网络模型的相关结构如何受到外部刺激的强烈调节。这些结果还提出了一种有效的机制,生物网络可以通过该机制动态地调节感官信息的编码和整合。电子补充材料本文的在线版本(10.1007 / s10827-017-0667-3)包含补充材料,可供授权使用。用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号