首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes
【2h】

Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes

机译:用于酶促反应过程的嵌入式逆前馈生物分子跟踪控制器的设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="kwd-title">Abbreviations: CRN, chemical reaction network; DNA, deoxyribonucleic acid; LHS, left-hand-side; RHS, right-hand-side; ODE, ordinary differential equation; PI, proportional-integral; FF, feedforward; IMC, internal model control; DSD, DNA strand displacement class="kwd-title">Keywords: Process control, Enzymatic reaction process, Chemical reaction network theory, Synthetic biology, Biological engineering class="head no_bottom_margin" id="abs0015title">AbstractFeedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a ‘subtractor’ that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ kwd-title”>缩写: CRN,化学反应网络; DNA,脱氧核糖核酸; LHS,左侧; RHS,右侧; ODE,常微分方程; PI,比例积分; FF,前馈; IMC,内部模型控制; DSD,DNA链置换 class =“ kwd-title”>关键字:过程控制,酶促反应过程,化学反应网络理论,合成生物学,生物工程 class =“ head no_bottom_margin” id =“ abs0015title “>摘要反馈控制已广泛应用于化学工程中,以提高化学过程的性能和鲁棒性。反馈控制器需要一个“减法器”,该减法器能够计算过程输出和参考信号之间的误差。在嵌入式生物分子控制电路的情况下,使用标准化学反应网络理论设计的减法器只能实现单边减法,从而使标准控制器的设计方法不足。在这里,我们展示了如何在化学反应网络理论的框架内设计和实现一种生物分子控制器,该控制器可以跟踪酶促反应过程的输出中所需的变化。控制器架构采用了基于反转的前馈控制器,该控制器补偿了单侧减法器的局限性,单侧减法器为反馈控制器生成了误差信号。与替代设计相比,所提出的方法所需的化学反应要少得多,并且在合成生物学和生物工程领域中应具有广泛的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号