首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Structure-based Catalytic Optimization of a Type III Rubisco from a Hyperthermophile
【2h】

Structure-based Catalytic Optimization of a Type III Rubisco from a Hyperthermophile

机译:基于结构的催化优化的嗜热菌III型Rubisco

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Calvin-Benson-Bassham cycle is responsible for carbon dioxide fixation in all plants, algae, and cyanobacteria. The enzyme that catalyzes the carbon dioxide-fixing reaction is ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) belongs to the type III group, and shows high activity at high temperatures. We have previously found that replacement of the entire α-helix 6 of Tk-Rubisco with the corresponding region of the spinach enzyme (SP6 mutant) results in an improvement of catalytic performance at mesophilic temperatures, both in vivo and in vitro, whereas the former and latter half-replacements of the α-helix 6 (SP4 and SP5 mutants) do not yield such improvement. We report here the crystal structures of the wild-type Tk-Rubisco and the mutants SP4 and SP6, and discuss the relationships between their structures and enzymatic activities. A comparison among these structures shows the movement and the increase of temperature factors of α-helix 6 induced by four essential factors. We thus supposed that an increase in the flexibility of the α-helix 6 and loop 6 regions was important to increase the catalytic activity of Tk-Rubisco at ambient temperatures. Based on this structural information, we constructed a new mutant, SP5-V330T, which was designed to have significantly greater flexibility in the above region, and it proved to exhibit the highest activity among all mutants examined to date. The thermostability of the SP5-V330T mutant was lower than that of wild-type Tk-Rubisco, providing further support on the relationship between flexibility and activity at ambient temperatures.
机译:卡尔文-本森-巴萨姆循环负责所有植物,藻类和蓝细菌中的二氧化碳固定。催化二氧化碳固定反应的酶是核糖-1,5-双磷酸羧化酶/加氧酶(Rubisco)。来自超嗜热古细菌Thermococcus kodakarensis(Tk-Rubisco)的Rubisco属于III型,在高温下表现出高活性。我们以前已经发现,用菠菜酶的相应区域(SP6突变体)替换Tk-Rubisco的整个α-螺旋6可以改善体内和体外在中温温度下的催化性能。而后半部分替换α-螺旋6(SP4和SP5突变体)不会产生这种改善。我们在这里报告野生型Tk-Rubisco和突变体SP4和SP6的晶体结构,并讨论它们的结构与酶活性之间的关系。这些结构之间的比较表明,由四个基本因子引起的α-螺旋6温度因子的运动和增加。因此,我们认为增加α-螺旋6和环6区域的柔韧性对于增加Tk-Rubisco在环境温度下的催化活性是重要的。基于此结构信息,我们构建了一个新的突变体SP5-V330T,该突变体被设计为在上述区域具有更大的灵活性,并被证明在迄今为止检测的所有突变体中均表现出最高的活性。 SP5-V330T突变体的热稳定性低于野生型Tk-Rubisco,为环境温度下的柔韧性和活性之间的关系提供了进一步的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号