首页> 美国卫生研究院文献>Polymers >In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load
【2h】

In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load

机译:热力载荷下3D打印ABS悬臂梁损伤定量的现场动态响应测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Acrylonitrile butadiene styrene (ABS) offers good mechanical properties and is effective in use to make polymeric structures for industrial applications. It is one of the most common raw material used for printing structures with fused deposition modeling (FDM). However, most of its properties and behavior are known under quasi-static loading conditions. These are suitable to design ABS structures for applications that are operated under static or dead loads. Still, comprehensive research is required to determine the properties and behavior of ABS structures under dynamic loads, especially in the presence of temperature more than the ambient. The presented research was an effort mainly to provide any evidence about the structural behavior and damage resistance of ABS material if operated under dynamic load conditions coupled with relatively high-temperature values. A non-prismatic fixed-free cantilever ABS beam was used in this study. The beam specimens were manufactured with a 3D printer based on FDM. A total of 190 specimens were tested with a combination of different temperatures, initial seeded damage or crack, and crack location values. The structural dynamic response, crack propagation, crack depth quantification, and their changes due to applied temperature were investigated by using analytical, numerical, and experimental approaches. In experiments, a combination of the modal exciter and heat mats was used to apply the dynamic loads on the beam structure with different temperature values. The response measurement and crack propagation behavior were monitored with the instrumentation, including a 200× microscope, accelerometer, and a laser vibrometer. The obtained findings could be used as an in-situ damage assessment tool to predict crack depth in an ABS beam as a function of dynamic response and applied temperature.
机译:丙烯腈丁二烯苯乙烯(ABS)具有良好的机械性能,可有效用于制造工业应用的聚合物结构。它是用于通过熔融沉积建模(FDM)印刷结构的最常见原材料之一。但是,在准静态负载条件下,它的大多数特性和行为是已知的。这些适合于设计在静态或恒载下运行的应用的ABS结构。尽管如此,仍需要进行全面的研究来确定动态载荷下ABS结构的性能和行为,尤其是在温度高于环境温度的情况下。提出的研究是一项主要工作,旨在提供有关在动态载荷条件下以及相对较高的温度条件下运行的ABS材料的结构行为和抗损伤性的任何证据。在这项研究中使用了非棱柱形的固定自由悬臂梁。光束样本是使用基于FDM的3D打印机制造的。总共对190个试样进行了测试,这些试样具有不同的温度,初始的种子损坏或裂纹以及裂纹位置值的组合。通过使用分析,数值和实验方法研究了结构动力响应,裂纹扩展,裂纹深度量化及其因施加温度而引起的变化。在实验中,模态激励器和加热垫的组合被用来在具有不同温度值的梁结构上施加动态载荷。用包括200倍显微镜,加速度计和激光振动计在内的仪器监测响应测量和裂纹扩展行为。所获得的发现可以用作现场损伤评估工具,以预测ABS梁中的裂缝深度作为动态响应和所施加温度的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号