首页> 美国卫生研究院文献>Nanomaterials >Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene
【2h】

Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene

机译:CVD石墨烯上等离子增强化学气相沉积法制备的无转移反型石墨烯/硅异质结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The heterostructures of two-dimensional (2D) and three-dimensional (3D) materials represent one of the focal points of current nanotechnology research and development. From an application perspective, the possibility of a direct integration of active 2D layers with exceptional optoelectronic and mechanical properties into the existing semiconductor manufacturing processes is extremely appealing. However, for this purpose, 2D materials should ideally be grown directly on 3D substrates to avoid the transferring step, which induces damage and contamination of the 2D layer. Alternatively, when such an approach is difficult—as is the case of graphene on noncatalytic substrates such as Si—inverted structures can be created, where the 3D material is deposited onto the 2D substrate. In the present work, we investigated the possibility of using plasma-enhanced chemical vapor deposition (PECVD) to deposit amorphous hydrogenated Si (a-Si:H) onto graphene resting on a catalytic copper foil. The resulting stacks created at different Si deposition temperatures were investigated by the combination of Raman spectroscopy (to quantify the damage and to estimate the change in resistivity of graphene), temperature-dependent dark conductivity, and constant photocurrent measurements (to monitor the changes in the electronic properties of a-Si:H). The results indicate that the optimum is 100 °C deposition temperature, where the graphene still retains most of its properties and the a-Si:H layer presents high-quality, device-ready characteristics.
机译:二维(2D)和三维(3D)材料的异质结构代表了当前纳米技术研究和开发的重点之一。从应用的角度来看,将具有卓越的光电和机械性能的有源2D层直接集成到现有半导体制造工艺中的可能性极具吸引力。然而,为此目的,理想地,应将2D材料直接生长在3D基板上以避免转移步骤,该转移步骤会导致2D层的损坏和污染。替代地,当这种方法困难时(例如在非催化性基材(例如Si)上的石墨烯的情况),可以创建倒置结构,其中将3D材料沉积到2D基材上。在当前的工作中,我们研究了使用等离子体增强化学气相沉积(PECVD)将非晶态氢化Si(a-Si:H)沉积到位于催化铜箔上的石墨烯上的可能性。通过拉曼光谱(量化损伤并估计石墨烯电阻率的变化),温度相关的暗电导率和恒定的光电流测量值(以监测硅的变化)的组合,研究了在不同的Si沉积温度下产生的叠层。 a-Si:H的电子性质)。结果表明,最佳沉积温度为100°C,此时石墨烯仍保留其大部分性能,而a-Si:H层则具有高质量的器件就绪特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号