首页> 美国卫生研究院文献>Materials >Preparation of Composite Monolith Supercapacitor Electrode Made from Textile-Grade Polyacrylonitrile Fibers and Phenolic Resin
【2h】

Preparation of Composite Monolith Supercapacitor Electrode Made from Textile-Grade Polyacrylonitrile Fibers and Phenolic Resin

机译:纺织级聚丙烯腈纤维与酚醛树脂复合单片超级电容器电极的制备

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work a composite monolith was prepared from widely available and cost effective raw materials, textile-grade polyacrylonitrile (PAN) fibers and phenolic resin. Two activation procedures (physical and chemical) were used to increase the surface area of the produced carbon electrode. Characterization of the thermally stabilized fibers produced was made using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and Carbon-Hydrogen-Nitrogen(CHN) elemental analysis, in order to choose the optimum conditions of producing the stabilized fibers. Characterization of the produced composite monolith electrode was performed using physical adsorption of nitrogen at 77 °K, cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrical resistivity in order to evaluate its performance. All the electrodes prepared had a mixture of micropores and mesopores. Pressing the green monolith during the curing process was found to reduce largely the specific surface area and to some degree the electrical resistivity of the chemically activated composite electrode. Physical activation was more suitable than chemical activation, where it resulted in an electrode with specific capacity 29 F/g, good capacitive behavior and the stability of the electrical resistivity over the temperature range −130 to 80 °C. Chemical activation resulted in a very poor electrode with resistive rather than capacitive properties.
机译:在这项工作中,复合材料整料是由广泛可用且具有成本效益的原材料,纺织级聚丙烯腈(PAN)纤维和酚醛树脂制成的。两种活化程序(物理和化学)被用来增加所生产的碳电极的表面积。使用差示扫描量热法(DSC),热重分析(TGA)和碳氢氮(CHN)元素分析对生产的热稳定纤维进行表征,以选择生产稳定纤维的最佳条件。使用77°K的氮气物理吸附,循环伏安法(CV),恒电流充放电(GCD)和电阻率来表征所生产的复合整体电极,以评估其性能。制备的所有电极均具有微孔和中孔的混合物。发现在固化过程中对生坯进行压制可大大降低比表面积,并在一定程度上减小化学活化复合电极的电阻率。物理活化比化学活化更合适,因为化学活化产生的电极的比容量为29 F / g,在-130至80°C的温度范围内具有良好的电容性能和电阻稳定性。化学活化导致非常差的电极具有电阻性而非电容性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号