首页> 美国卫生研究院文献>Materials >Multi-Terminal Transistor-Like Devices Based on Strongly Correlated Metallic Oxides for Neuromorphic Applications
【2h】

Multi-Terminal Transistor-Like Devices Based on Strongly Correlated Metallic Oxides for Neuromorphic Applications

机译:基于强相关金属氧化物的多端子晶体管样器件在神经形态应用中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Memristive devices are attracting a great attention for memory, logic, neural networks, and sensing applications due to their simple structure, high density integration, low-power consumption, and fast operation. In particular, multi-terminal structures controlled by active gates, able to process and manipulate information in parallel, would certainly provide novel concepts for neuromorphic systems. In this way, transistor-based synaptic devices may be designed, where the synaptic weight in the postsynaptic membrane is encoded in a source-drain channel and modified by presynaptic terminals (gates). In this work, we show the potential of reversible field-induced metal-insulator transition (MIT) in strongly correlated metallic oxides for the design of robust and flexible multi-terminal memristive transistor-like devices. We have studied different structures patterned on YBa Cu O films, which are able to display gate modulable non-volatile volume MIT, driven by field-induced oxygen diffusion within the system. The key advantage of these materials is the possibility to homogeneously tune the oxygen diffusion not only in a confined filament or interface, as observed in widely explored binary and complex oxides, but also in the whole material volume. Another important advantage of correlated oxides with respect to devices based on conducting filaments is the significant reduction of cycle-to-cycle and device-to-device variations. In this work, we show several device configurations in which the lateral conduction between a drain-source channel (synaptic weight) is effectively controlled by active gate-tunable volume resistance changes, thus providing the basis for the design of robust and flexible transistor-based artificial synapses.
机译:忆阻器件由于其结构简单,高密度集成,低功耗和快速操作而在存储器,逻辑,神经网络和传感应用领域引起了极大的关注。特别地,由有源门控制的能够并行处理和操纵信息的多端子结构必将为神经形态系统提供新颖的概念。以这种方式,可以设计基于晶体管的突触设备,其中突触后膜中的突触权重被编码在源极-漏极通道中,并由突触前端子(门)进行修改。在这项工作中,我们展示了在强相关的金属氧化物中可逆场诱导的金属-绝缘体转变(MIT)的潜力,可用于设计坚固而灵活的多端忆阻晶体管式器件。我们研究了在YBa Cu O薄膜上构图的不同结构,这些结构能够显示由场致氧扩散在系统内驱动的栅极可调节非易失性体积MIT。这些材料的主要优点是,不仅可以在密闭的灯丝或界面中均匀地调节氧的扩散(如在广泛探索的二元和复合氧化物中观察到的那样),而且还可以在整个材料体积中均匀地调节氧的扩散。相对于基于导电细丝的器件,相关氧化物的另一个重要优点是显着降低了周期与周期之间以及器件与设备之间的差异。在这项工作中,我们展示了几种器件配置,其中通过有源栅极可调的体积电阻变化有效地控制了漏极-源极沟道之间的横向传导(突触重量),从而为基于鲁棒性和灵活晶体管的设计提供了基础人工突触。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号