首页> 美国卫生研究院文献>other >The biological effectiveness of targeted radionuclide therapy based on a whole-body pharmacokinetic model
【2h】

The biological effectiveness of targeted radionuclide therapy based on a whole-body pharmacokinetic model

机译:基于全身药代动力学模型有针对性的放射性核素治疗的生物有效性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biologically effective dose (BED) may be more of a relevant quantity than absorbed dose for establishing tumour response relationships. By taking into account the dose rate and tissue-specific parameters such as repair and radiosensitivity, it is possible to compare the relative biological effects of different targeted radionuclide therapy (TRT) agents. The aim of this work was to develop an analytical tumour BED calculation for TRT that could predict a relative biological effect based on normal body and tumour pharmacokinetics. This work represents a step in the direction of establishing relative pharmacokinetic criteria of when the BED formalism is more applicable than absorbed dose for TRT. A previously established pharmacokinetic (PK) model for TRT was used and adapted into the BED formalism. An analytical equation for the protraction factor, which incorporates dose rate and repair rate, was derived. Dose rates within the normal body and tumour were related to the slopes of their time–activity curves which were determined by the ratios of their respective PK parameters. The relationships between the tumour influx-to-efflux ratio (k34:k43), central compartment efflux-to-influx ratio (k12:k21), central elimination (kel), and tumour repair rate (μ), and tumour BED were investigated. As the k34:k43 ratio increases and the k12:k21 ratio decreases, the difference between tumour BED and D increases. In contrast, as the k34:k43 ratios decrease and the k12:k21 ratios increase, the tumour BED approaches D. At large k34:k43 ratios, the difference between tumour BED and D increases to a maximum as kel increases. At small k34:k43 ratios, the tumour BED approaches D at very small kel. At small μ and small k34:k43 ratios, the tumour BED approaches D. For large k34:k43 ratios, large μ values cause tumour BED to approach D. This work represents a step in the direction of establishing relative PK criteria of when the BED formalism is more applicable than absorbed dose for TRT. It also provides a framework by which the biological effects of different TRT agents can be compared in order to predict efficacy.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号