首页> 美国卫生研究院文献>other >Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High Throughput Screening
【2h】

Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High Throughput Screening

机译:纳米材料毒性测试21世纪:预测性毒理学方法的使用和高通量筛选

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ConspectusThe production of engineered nanomaterials (ENMs) is a scientific breakthrough in material design and the development of new consumer products. While the successful implementation of nanotechnology is important for the growth of the global economy, we also need to consider the possible environmental health and safety (EHS) impact as a result of the novel physicochemical properties that could generate hazardous biological outcomes. In order to assess ENM hazard, reliable and reproducible screening approaches are needed to test the basic materials as well as nano-enabled products. A platform is required to investigate the potentially endless number of bio-physicochemical interactions at the nano/bio interface, in response to which we have developed a predictive toxicological approach. We define a predictive toxicological approach as the use of mechanisms-based high throughput screening in vitro to make predictions about the physicochemical properties of ENMs that may lead to the generation of pathology or disease outcomes in vivo. The in vivo results are used to validate and improve the in vitro high throughput screening (HTS) and to establish structure-activity relationships (SARs) that allow hazard ranking and modeling by an appropriate combination of in vitro and in vivo testing. This notion is in agreement with the landmark 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy” (), which advocates increased efficiency of toxicity testing by transitioning from qualitative, descriptive animal testing to quantitative, mechanistic and pathway-based toxicity testing in human cells or cell lines using high throughput approaches. Accordingly, we have implemented HTS approaches to screen compositional and combinatorial ENM libraries to develop hazard ranking and structure-activityrelationships that can be used for predicting in vivo injury outcomes. This predictive approach allows the bulk of the screening analysis and high volume data generation to be carried out in vitro, following which limited, but critical, validation studies are carried out in animals or whole organisms. Risk reduction in the exposed human or environmental populations can then focus on limiting or avoiding exposures that trigger these toxicological responses as well as implementing safer design of potentially hazardous ENMs. In this communication, we review the tools required for establishing predictive toxicology paradigms to assess inhalation and environmental toxicological scenarios through the use of compositional and combinatorial ENM libraries, mechanism-based HTS assays, hazard ranking and development of nano-SARs. We will discuss the major injury paradigms that have emerged based on specific ENM properties, as well as describing the safer design of ZnO nanoparticles based on characterization of dissolution chemistry as a major predictor of toxicity.
机译:展望工程化纳米材料(ENMS)的生产是材料设计和新型消费产品的发展的科学突破。虽然纳米技术的成功实施对于全球经济的增长至关重要,但我们还需要考虑可能的环境健康和安全(EHS)的影响,这是可能产生危险生物学结果的新型物理化学性质。为了评估enm危险,需要可靠和可重复的筛选方法来测试基本材料以及纳米产品。需要平台来研究纳米/生物界面处的潜在无限数量的生物理化相互作用,以响应我们开发了预测毒理学方法。我们定义了一种预测的毒理学方法,作为使用基于机制的高通量筛选在体外进行预测,以便预测蜗牛的物理化学性质,这可能导致体内病理或疾病结果的产生。体内结果用于验证和改善体外高通量筛选(HTS)并建立结构 - 活性关系(SARS),其允许通过体外和体内测试的适当组合进行危害排名和建模。本概念与美国国家科学院的标志标志达成协议,“21世纪毒性测试:愿景和战略”(),其主张通过从定性,描述性动物检测转换来提高毒性测试效率使用高通量方法的人体细胞或细胞系中的定量,机械和途径毒性测试。因此,我们已经实施了HTS接近筛选组成和组合铕文库,以制定可用于预测体内损伤结果的危害排名和结构 - 活性关系。这种预测方法允许在体外进行大量筛选分析和大容量数据生成,其在动物或全生物中进行有限但关键的验证研究。暴露的人或环境群体的风险降低可以集中在限制或避免触发这些毒理学反应的曝光以及实施潜在危险益智的更安全设计。在这种通信中,我们通过使用组合物和组合恩斯文库,基于机制的HTS测定,危险排名和纳米SARS的危险排名和发展来审查建立预测毒理学范例来评估吸入和环境毒理情景所需的工具。我们将讨论基于特定欧洲特性出现的主要伤害范例,以及描述ZnO纳米粒子的更安全设计,基于溶解化学表征作为毒性的主要预测因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号