首页> 美国卫生研究院文献>other >Electrostatic Interactions and Protein Competition Reveal a Dynamic Surface in Gold Nanoparticle–Protein Adsorption
【2h】

Electrostatic Interactions and Protein Competition Reveal a Dynamic Surface in Gold Nanoparticle–Protein Adsorption

机译:静电相互作用和蛋白质竞争揭示了金纳米粒子-蛋白质吸附的动态表面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gold nanoparticle– (AuNP–) protein conjugates are potentially useful in a broad array of diagnostic and therapeutic applications, but the physical basis of the simultaneous adsorption of multiple proteins onto AuNP surfaces remains poorly understood. Here, we investigate the contribution of electrostatic interactions to protein–AuNP binding by studying the pH-dependent binding behavior of two proteins, GB3 and ubiquitin. For both proteins, binding to 15-nm citrate-coated AuNPs closely tracks with the predicted net charge using standard pKa values, and a dramatic reduction in binding is observed when lysine residues are chemically methylated. This suggests that clusters of basic residues are involved in binding, and using this hypothesis, we model the pKa shifts induced by AuNP binding. Then, we employ a novel NMR-based approach to monitor the binding competition between GB3 and ubiquitin in situ at different pH values. In light of our model, the NMR measurements reveal that the net charge, binding association constant, and size of each protein play distinct roles at different stages of protein adsorption. When citrate-coated AuNPs and proteins first interact, net charge appears to dominate. However, as citrate molecules are displaced by protein, the surface chemistry changes, and the energetics of binding becomes far more complex. In this case, we observed that GB3 is able to displace ubiquitin at intermediate time scales, even though it has a lower net charge. The thermodynamic model for binding developed here could be the first step toward predicting the binding behavior in biological fluids, such as blood plasma.
机译:金纳米粒子(AuNP–)蛋白结合物可能在多种诊断和治疗应用中有用,但人们对多种蛋白质同时吸附到AuNP表面的物理基础了解甚少。在这里,我们通过研究两种蛋白质(GB3和泛素)的pH依赖性结合行为来研究静电相互作用对蛋白质-AuNP结合的贡献。对于这两种蛋白质,使用标准pKa值与15 nm柠檬酸盐包被的AuNP的结合都与预测的净电荷密切相关,并且当赖氨酸残基被化学甲基化时,结合力会大大降低。这表明碱性残基簇参与结合,并且使用该假设,我们模拟了由AuNP结合诱导的pKa移位。然后,我们采用一种新颖的基于NMR的方法来监测GB3和泛素在不同pH值之间的结合竞争。根据我们的模型,NMR测量表明,每种蛋白质的净电荷,结合缔合常数和大小在蛋白质吸附的不同阶段起着不同的作用。当柠檬酸盐包被的AuNP与蛋白质首次相互作用时,净电荷似乎占主导地位。但是,随着柠檬酸盐分子被蛋白质置换,表面化学会发生变化,结合的能量变得更加复杂。在这种情况下,我们观察到GB3能够在中等时间范围内置换泛素,即使它的净电荷较低。此处开发的结合热力学模型可能是预测生物流体(例如血浆)中结合行为的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号