首页> 美国卫生研究院文献>other >Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique
【2h】

Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique

机译:基于铜催化的叠氮化物-炔烃环加成(CuAAC)的完全可回收的刚性形状记忆泡沫采用盐浸技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., Tg of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, Tg of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m3. In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above Tg after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of “reversible plasticity”, making it highly desirable as a glassy shape memory foams.
机译:这项研究是首次利用铜催化的叠氮化物-炔烃环加成(CuAAC)聚合反应,从具有高玻璃化转变温度的明确定义的网络中形成坚韧,多孔的多孔材料。通过将CuAAC泡沫与环氧胺基泡沫(由具有相似骨架的单体组成)进行比较,评估了CuAAC反应产物即三唑形成的网络键对高应变力学行为的影响。结构和机械性能(即,CuAAC泡沫的Tg为115℃,橡胶模量为1.0 MPa,环氧胺泡沫的Tg为125℃,橡胶模量为1.2 MPa)。当每种泡沫在室温下均匀压缩至80%应变时,环氧胺泡沫在第一次压缩循环中仅达到70%应变后才受到严重破坏,其韧性为300 MJ / m 3 。相反,在压缩至80%应变的第一个循环后,CuAAC泡沫在玻璃态下表现出明显的延展性,其韧性达到850 MJ / m 3 三倍。另外,当在环境温度下五个压缩循环中的每一个之后,将CuAAC泡沫加热至Tg以上,在环境温度下达到80%的应变时,该泡沫完全恢复其原始形状,同时在多个压缩循环中表现出机械性能的逐渐降低。该泡沫甚至在五个连续的循环中也表现出几乎完全的形状固定性和回复率,表明“可逆的可塑性”,使其成为玻璃状形状记忆泡沫是非常理想的。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号