首页> 美国卫生研究院文献>other >Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin
【2h】

Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin

机译:阿巴拉契亚盆地水力压裂天然气井早期生产过程中Marinobacter和Arcobacter成员影响系统的生物地球化学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of Marinobacter and Arcobacter bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived Marinobacter sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. Marinobacter and Arcobacter can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. Arcobacter is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of Marinobacter and Arcobacter during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system.
机译:水力压裂是提高非常规页岩地层油气资源采收率的主要方法,但是对于微生物对天然气井中生物地球化学循环的影响了解甚少。尽管对某些发酵细菌和产甲烷菌的代谢在后期产生的液体中占主导地位的代谢已进行了充分的研究,但在返排早期,氧气和其他表面来源的含氧阴离子和营养物质被耗尽后,关于微生物的报道鲜有报道。在这里,我们报告了Utica-Point宜人层和Marcellus层天然气井中Marinobacter和Arcobacter细菌物种的分离,基因组和表型特征,并支持了对采出液样品的地球化学和宏基因组学分析。这些非常规烃系统衍生的Marinobacter sp。能够利用多种有机碳源,包括脂肪族和芳香族碳氢化合物,氨基酸和羧酸。 Marinobacter和Arcobacter可以代谢有机氮源,分别具有反硝化作用和将硝酸盐异化还原为氨(DNRA)的能力。 DNRA和氨化工艺的应用部分解释了在采出液中测得的高浓度氨。杆状杆菌能够进行化学合成的硫氧化,从而可以促进其他异养,发酵或硫酸盐还原社区成员的代谢过程。我们的分析揭示了这些盐类在多种盐度(盐含量高达15%)中生长的机制,这解释了它们在天然气早期生产中的富集。这些结果表明,在水力压裂天然气井的关键成熟阶段,Marinobacter和Arcobacter的流行,并突显了这些属在该经济上重要的能源系统的生物地球化学循环中的重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号