首页> 美国卫生研究院文献>other >Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Acidithiobacillus ferrooxidans?
【2h】

Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Acidithiobacillus ferrooxidans?

机译:硫酸盐能否成为酸性铁硫氧化亚铁硫杆菌氧化黄铁矿中形成的第一个主要的含水硫物种?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

According to the literature, pyrite (FeS2) oxidation has been previously determined to involve thiosulfate as the first aqueous intermediate sulfur product, which is further oxidized to sulfate. In the present study, pyrite oxidation by Acidithiobacillus ferrooxidans was studied using electrochemical and metabolic approaches in an effort to extend existing knowledge on the oxidation mechanism. Due to the small surface area, the reaction rate of a compact pyrite electrode in the form of polycrystalline pyrite aggregate in A. ferrooxidans suspension was very slow at a spontaneously formed high redox potential. The slow rate made it possible to investigate the oxidation process in detail over a term of 100 days. Using electrochemical parameters from polarization curves and levels of released iron, the number of exchanged electrons per pyrite molecule was estimated. The values close to 14 and 2 electrons were determined for the oxidation with and without bacteria, respectively. These results indicated that sulfate was the dominant first aqueous sulfur species formed in the presence of bacteria and elemental sulfur was predominantly formed without bacteria. The stoichiometric calculations are consistent with high iron-oxidizing activities of bacteria that continually keep the released iron in the ferric form, resulting in a high redox potential. The sulfur entity of pyrite was oxidized to sulfate by Fe3+ without intermediate thiosulfate under these conditions. Cell attachment on the corroded pyrite electrode surface was documented although pyrite surface corrosion by Fe3+ was evident without bacterial participation. Attached cells may be important in initiating the oxidation of the pyrite surface to release iron from the mineral. During the active phase of oxidation of a pyrite concentrate sample, the ATP levels in attached and planktonic bacteria were consistent with previously established ATP content of iron-oxidizing cells. No significant upregulation of three essential genes involved in energy metabolism of sulfur compounds was observed in the planktonic cells, which represented the dominant biomass in the pyrite culture. The study demonstrated the formation of sulfate as the first dissolved sulfur species with iron-oxidizing bacteria under high redox potential conditions. Minor aqueous sulfur intermediates may be formed but as a result of side reactions.
机译:根据文献,黄铁矿(FeS 2)的氧化先前已被确定为涉及硫代硫酸盐作为第一含水中间硫产物,其进一步被氧化成硫酸盐。在本研究中,使用电化学和代谢方法研究了铁氧酸氧化硫杆菌对黄铁矿的氧化,以扩展对氧化机理的现有认识。由于表面积小,在自发形成的高氧化还原电势下,紧凑的黄铁矿电极以多晶黄铁矿聚集体的形式存在于A.ferrooxidans悬浮液中,反应速度非常慢。缓慢的速度使得可以在100天的时间内详细研究氧化过程。使用极化曲线和释放铁的水平的电化学参数,可以估算每个黄铁矿分子交换电子的数量。在有细菌和无细菌的情况下,分别确定接近14和2个电子的值。这些结果表明,硫酸盐是存在细菌时形成的主要的第一含水硫物质,而元素硫主要是在没有细菌的情况下形成的。化学计量的计算与细菌的高铁氧化活性相一致,细菌不断地将释放的铁保持在三价铁态,从而导致高氧化还原电势。在这些条件下,没有中间体硫代硫酸盐的情况下,Fe 3 + 将黄铁矿的硫实体氧化为硫酸盐。尽管在没有细菌参与的情况下,Fe 3 + 的黄铁矿表面腐蚀很明显,但仍记录了腐蚀的黄铁矿电极表面的细胞附着。附着的细胞对于引发黄铁矿表面的氧化以从矿物中释放铁可能很重要。在硫铁矿精矿样品氧化的活性阶段,附着细菌和浮游细菌中的ATP水平与先前确定的铁氧化细胞中的ATP含量一致。在浮游细胞中未观察到涉及硫化合物能量代谢的三个必需基因的显着上调,其代表了黄铁矿培养物中的主要生物量。研究表明,在高氧化还原电位条件下,硫酸盐是铁氧化细菌首先溶解的硫。可能会生成少量的含水硫中间产物,但这是副反应的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号