首页> 美国卫生研究院文献>Journal of Applied Clinical Medical Physics >Limited accuracy of dose calculation for large fields at deep depths using the BrainSCAN v5.21 treatment‐planning system
【2h】

Limited accuracy of dose calculation for large fields at deep depths using the BrainSCAN v5.21 treatment‐planning system

机译:使用BrainSCAN v5.21治疗计划系统对深处大区域进行剂量计算的准确性有限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Varian 120 multileaf collimator (MLC) has a leaf thickness of 5 mm projected at the isocenter plane and can deliver a radiation beam of large field size (up to 30 cm) to be used in intensity‐modulated radiotherapy (IMRT). Often the dose must be delivered to depths greater than 20 cm. Therefore, during the commissioning of the BrainSCAN v5.21 or any radiation treatment‐planning (RTP) systems, extensive testing of dose and monitor unit calculations must encompass the field sizes (1 cm to 30 cm) and the prescription depths (1 cm to 20 cm). Accordingly, the central‐axis percent depth doses (PDDs) and off‐axis percentage profiles must be measured at several depths for various field sizes. The data for this study were acquired with a 6‐MV X‐ray beam from a Varian 2100EX LINAC with a water phantom at a source‐to‐surface distance (SSD) of 100 cm. These measurements were also used to generate a photon beam module, based on a photon pencil beam dose‐calculation algorithm with a fast‐Fourier transform method. To commission the photon beam module used in our BrainSCAN RTP system, we performed a quantitative comparison of measured and calculated central‐axis depth doses and off‐axis profiles. Utilizing the principles of dose difference and distance‐to‐agreement introduced by Van Dyk et al. [Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys. 1993; 26:261—273], agreements between calculated and measured doses are   2% and   2 mm for the regions of low‐ and high‐dose gradients, respectively. However, large errors (up to ~5% and ~7% for 20‐cm and 30‐cm fields, respectively, at the depth 20 cm) were observed for monitor unit calculations. For a given field size, the disagreement increased with the depth. Similarly, for a given depth the disagreement also increased with the field size. These large systematic errors were caused by using the tissue maximum ratio (TMR) in BrainSCAN v5.21 without considering increased field size as depth increased. These errors have been reported to BrainLAB.PACS number: 87.53.‐j
机译:Varian 120多叶准直仪(MLC)在等中心平面上投影的叶片厚度为5 mm,可以发射大视场大小(最大30 cm)的辐射束,用于强度调制放射治疗(IMRT)。通常,必须将剂量输送到大于20厘米的深度。因此,在BrainSCAN v5.21或任何放射治疗计划(RTP)系统的调试过程中,剂量和监测仪计算的广泛测试必须包括视野大小(1 cm至30 cm)和处方深度(1 cm至20厘米)。因此,必须在各种深度的不同深度下测量中心轴深度剂量百分比(PDD)和离轴百分比曲线。这项研究的数据是使用具有水体模的Varian 2100EX LINAC的6MV X射线束在源到表面的距离(SSD)为100 cm处获得的。这些测量结果还用于基于光子笔束剂量计算算法和快速傅里叶变换法生成光子束模块。为了调试BrainSCAN RTP系统中使用的光子束模块,我们对测量和计算出的中心轴深度剂量和离轴轮廓进行了定量比较。利用Van Dyk等人介绍的剂量差异和协议距离原则。 [治疗计划计算机的调试和质量保证。 Int J Radiat Oncol生物学。 1993年; 26:261-273],低剂量和高剂量梯度区域的计算剂量和实测剂量之间的一致性分别为<2%和<2 mm。但是,在监视单位计算中,观察到较大的误差(对于20 cm和30 cm的场,在20 cm深度处分别高达5%和7%)。对于给定的字段大小,分歧随着深度而增加。类似地,对于给定的深度,分歧也随着场的大小而增加。这些大的系统错误是由于在BrainSCAN v5.21中使用组织最大比率(TMR)而未考虑随深度增加而增加的场大小引起的。这些错误已报告给BrainLAB.PACS,编号:87.53.-j

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号