首页> 美国卫生研究院文献>Journal of Experimental Botany >How light temperature and measurement and growth CO2 interactively control isoprene emission in hybrid aspen
【2h】

How light temperature and measurement and growth CO2 interactively control isoprene emission in hybrid aspen

机译:光温度以及测量和生长CO2如何交互控制混合白杨中的异戊二烯排放

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size.
机译:假设通过光,温度和大气[CO2]进行独立控制,可以模拟植物异戊二烯的排放。但是,异戊二烯的排放速率最终受其直接底物池大小,二甲基二烯丙基二磷酸酯(DMADP)和异戊二烯合酶活性的控制,这意味着环境控制可能相互作用。此外,对生长的适应[CO2]可以通过DMADP库大小和异戊二烯合酶活性来改变对照的份额,从而改变环境敏感性。研究了在环境[CO2]为380μmolmol -1 或升高的[CO2]在780μmolmol 的环境中适应的杂种杨木(Populus tremula×Populus tremuloides)幼树对异戊二烯排放的环境控制。 –1 。数据表明环境驱动因素和增长[CO2]对异戊二烯排放的强烈相互作用。异戊二烯排放的光增强在中间温度下最大,而在[CO2]升高的植物中则更大,表明DMADP供应量有更大的增强。异戊二烯发射的最佳温度在较低的光线下较高,表明在较高的光线下会激活替代的DMADP阱。另外,在较高的温度下,[CO2]对异戊二烯排放的抑制作用消失了,在高[CO2]生长的植物中具有特别强的作用。尽管如此,在升高的[CO2]生长植物中,仍预计DMADP库大小将在更高的温度下更强烈地控制异戊二烯的排放。我们认为,在DMADP池规模的水平上,应在未来的异戊二烯排放模型中纳入交互式环境控制和对生长的适应[CO2]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号