首页> 美国卫生研究院文献>The Journal of Chemical Physics >An accelerated algorithm for discrete stochastic simulation of reaction–diffusion systems using gradient-based diffusion and tau-leaping
【2h】

An accelerated algorithm for discrete stochastic simulation of reaction–diffusion systems using gradient-based diffusion and tau-leaping

机译:基于梯度扩散和tau-浸出的反应扩散系统离散随机模拟的加速算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic simulation of reaction–diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction–diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.
机译:反应扩散系统的随机模拟可以研究随机事件,这些事件是由生物细胞中分子种类的数量少且分布不均引起的。细胞内微区和扩散梯度中的随机变化在细胞的时空活动和行为中起重要作用。尽管精确的随机模拟可以模拟每个单独的反应和扩散事件,从而给出系统状态随时间变化的最准确轨迹,但对于许多实际应用而言,它可能太慢了。我们提出了一种用于反应扩散系统的离散随机模拟的加速算法,该算法旨在通过减少完成模拟运行所需的时间步数来提高模拟速度。该方法的独特之处在于它采用了两种尚未纳入现有空间随机模拟算法的策略。首先,相邻子体积之间的扩散转移基于浓度梯度。这种处理需要仅对从较高到较低浓度梯度的净或观察到的扩散事件进行采样,而不是对所有扩散事件进行采样,而与局部浓度梯度无关。其次,我们扩展了非负泊松tau-leaping方法,该方法最初是为加速非空间或齐次随机模拟算法而开发的。该方法满足反应条件,即在反应过程中倾向不会明显改变,并确保反应过程不会导致分子种群变为负数,同时满足反应条件,从而在反应和扩散过程中统一计算出每个反应时间。数值结果表明,通过结合这两种新策略可以提高仿真速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号