首页> 美国卫生研究院文献>Chemical Science >Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies
【2h】

Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies

机译:探测过渡金属配合物的氧化态:以电荷和自旋密度如何确定Mn L边缘X射线吸收能为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes MnII(acac)2 and MnIII(acac)3 as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of MnIII in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.
机译:无机系统和金属蛋白中的过渡金属可能以不同的氧化态出现,这使其成为理想的氧化还原活性催化剂。为了获得对催化反应的机械理解,因此至关重要的是,理想地在操作中了解活性金属的氧化态。 L边缘X射线吸收光谱法(XAS)是一项强大的技术,通常用于通过随着氧化态的增加L边缘吸收能的明显蓝移来推断氧化态。关于量子化学概念的统一描述,迄今为止,该化学概念并不是在金属上局部发生氧化,而是在整个分子上局部发生氧化;对于L-edge XAS在金属上局部探测电子结构的基本理解至今仍不存在。在这里,我们对氧化还原和核心激发过程中金属和整个分子上电荷和自旋密度的变化进行了量化。我们解释了高自旋复合物Mn II (acac)2和Mn III (acac)3之间的L边缘XAS位移的起源,并以此为代表模型系统。从头计算理论,以解除氧化态变化的影响与几何影响。与基态相比,该位移反映了与基态相比,在芯激发态下Mn III 的电子亲和力增加,这是由于芯激发时Mn 3d壳的收缩以及经典库仑相互作用的伴随变化。这张新图片量化了以金属为中心的芯孔探针如何在形式氧化态中发生变化,并封闭和证实了先前的解释。该方法广泛适用于分子系统中氧化还原催化反应的机理研究,其中电荷和自旋定位/离域确定反应路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号