首页> 美国卫生研究院文献>Materials >Adaptivity in Bayesian Inverse Finite Element Problems: Learning and Simultaneous Control of Discretisation and Sampling Errors
【2h】

Adaptivity in Bayesian Inverse Finite Element Problems: Learning and Simultaneous Control of Discretisation and Sampling Errors

机译:贝叶斯逆有限元问题中的适应性:离散化和采样误差的学习和同时控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The local size of computational grids used in partial differential equation (PDE)-based probabilistic inverse problems can have a tremendous impact on the numerical results. As a consequence, numerical model identification procedures used in structural or material engineering may yield erroneous, mesh-dependent result. In this work, we attempt to connect the field of adaptive methods for deterministic and forward probabilistic finite-element (FE) simulations and the field of FE-based Bayesian inference. In particular, our target setting is that of exact inference, whereby complex posterior distributions are to be sampled using advanced Markov Chain Monte Carlo (MCMC) algorithms. Our proposal is for the mesh refinement to be performed in a goal-oriented manner. We assume that we are interested in a finite subset of quantities of interest (QoI) such as a combination of latent uncertain parameters and/or quantities to be drawn from the posterior predictive distribution. Next, we evaluate the quality of an approximate inversion with respect to these quantities. This is done by running two chains in parallel: (i) the approximate chain and (ii) an enhanced chain whereby the approximate likelihood function is corrected using an efficient deterministic error estimate of the error introduced by the spatial discretisation of the PDE of interest. One particularly interesting feature of the proposed approach is that no user-defined tolerance is required for the quality of the QoIs, as opposed to the deterministic error estimation setting. This is because our trust in the model, and therefore a good measure for our requirement in terms of accuracy, is fully encoded in the prior. We merely need to ensure that the finite element approximation does not impact the posterior distributions of QoIs by a prohibitively large amount. We will also propose a technique to control the error introduced by the MCMC sampler, and demonstrate the validity of the combined mesh and algorithmic quality control strategy.
机译:基于偏微分方程(PDE)的概率反问题中使用的计算网格的局部大小可能对数值结果产生巨大影响。结果,在结构或材料工程中使用的数值模型识别程序可能会产生错误的,取决于网格的结果。在这项工作中,我们尝试将确定性和前向概率有限元(FE)模拟的自适应方法领域与基于FE的贝叶斯推理领域联系起来。特别是,我们的目标设置是精确推断的设置,从而使用先进的马尔可夫链蒙特卡洛(MCMC)算法对复杂的后验分布进行采样。我们的建议是以目标为导向的方式进行网格细化。我们假设我们对感兴趣的数量(QoI)的有限子集感兴趣,例如潜在不确定性参数和/或要从后验预测分布中得出的数量的组合。接下来,我们针对这些数量评估近似反演的质量。这是通过并行运行两个链来完成的:(i)近似链和(ii)增强链,从而使用有效的确定性误差估计来校正近似似然函数,该估计误差是由相关PDE的空间离散化引起的。所提出方法的一个特别有趣的特征是,与确定性误差估计设置相比,QoI的质量不需要用户定义的公差。这是因为我们对模型的信任以及对我们对准确性的要求的一种很好的衡量标准已在先前被完全编码。我们只需要确保有限元逼近不会对QoI的后验分布产生过大的影响。我们还将提出一种控制MCMC采样器引入的误差的技术,并证明组合的网格和算法质量控制策略的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号