首页> 中文期刊> 《天津大学学报:英文版》 >Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering

Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering

         

摘要

Visible-light-driven CO2 photoreduction to achieve renewable materials,such as syngas,hydrocarbons,and alcohols,is a key process that could relieve environmental problems and the energy crisis simultaneously.Reduction of syngas products with diff erent H2:CO proportions is highly expected to produce high value-added chemicals in the industry.However,the development of technologies employing long-wavelength irradiation to achieve CO2 photoreduction and simultaneous tuning of the resultant H2:CO proportion remains a challenging endeavor.In this work,we carried out interfacial engineering by designing a series of heterostructured layered double-hydroxide/MoS2 nanocomposites via electrostatic self-assembly.The syngas proportion(H 2:CO)obtained from CO2 photoreduction could be modulated from 1:1 to 9:1 by visible-light irradiation(λ>400 nm)under the control of the interface-rich heterostructures.This work provides a cost-eff ective strategy for solar-tofuel conversion in an artificial photosynthetic system and describes a novel route to produce syngas with targeted proportions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号