首页> 中文期刊> 《光谱学与光谱分析》 >基于双向长短期记忆网络的太赫兹光谱识别

基于双向长短期记忆网络的太赫兹光谱识别

         

摘要

cqvip:特征提取是太赫兹光谱识别的关键处理步骤,通常利用降维方法作为特征提取手段。然而,当一些化合物的太赫兹光谱曲线整体差异度较小时,降维方法往往会缺失样本差异的重要特征信息,从而导致分类错误。如果不采用降维方法提取特征,传统机器学习分类算法对维数较高的原始太赫兹光谱数据又不能很好的分类。针对此问题,提出了一种基于双向长短期记忆网络(BLSTM-RNN)自动提取太赫兹光谱特征的识别方法。BLSTM-RNN作为一种特殊的循环神经网络,利用其LSTM单元可以有效解决原始太赫兹光谱数据维数较高使得模型难以训练问题。再结合模型的双向频谱信息利用架构模式,可以增强模型对复杂光谱数据自动提取有效特征信息的能力。采用三类、15种化合物太赫兹透射光谱作为测试对象,首先利用S-G滤波和三次样条插值对Anthraquinone,Benomyl和Carbazole等十五种化合物在0.9~6 THz内的太赫兹透射光谱数据进行归一化处理,然后通过构建一个具有双向长短期记忆的循环神经网络对太赫兹光谱的全频谱信息进行自动特征提取并利用Softmax分类器进行分类。通过试验优化网络结构和各项参数,最终获得了针对复杂太赫兹透射光谱数据的预测模型,并与传统机器学习算法SVM,KNN及神经网络算法MLP,CNN进行对比实验。结果表明,dataset-1和dataset-2分别作为差异度较大和无明显峰值特征的五种化合物太赫兹透射光谱数据集,其平均识别率分别为100%和98.51%,与其他方法相比识别率有所提高;最重要的是,dataset-3作为5种化合物谱线极为相似的太赫兹透射光谱数据集,其平均识别率为96.56%,与其他方法相比识别率提高显著;dataset-4作为dataset-1,dataset-2和dataset-3的透射光谱数据集集合,其平均识别率为98.87%。从而验证了BLSTM-RNN模型能自动提取有效的太赫兹光谱特征,同时又能保证复杂太赫兹光谱的预测精度。在选择模型训练优化算法方面,使用Adam优化算法要好于RMSProp,SGD和AdaGrad,其模型的目标函数损失值收敛速度最快。同时随着模型训练迭代次数增加,相似太赫兹透射光谱数据集的预测准确率也不断提升。可为复杂太赫兹光谱数据库的光谱识别检索提供一种新的识别方法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号