首页> 中文期刊> 《寒旱区科学:英文版》 >Simulation and analysis of river runoff in typical cold regions

Simulation and analysis of river runoff in typical cold regions

         

摘要

It is generally agreed that global warming is taking place, which has caused runoff generation processes and apparently total runoff amount changes in cold regions of Northwestern China. It is absolutely necessary to quantify and analyze earth surface hydrological processes by numerical models for formulating scientific sustainable development of water resources. Hydrological models became established tools for studying the hydrological cycle, but did not consider frozen soil or glacier hydrology. Thus, they should be improved to satisfy the simulation of hydrological processes in cold regions. In this paper, an energy balance glacier melt model was successfully coupled to the VIC model with frozen soil scheme, thus improving the models performance in a cold catchment area. We performed the improved VIC model to simulate the hydrological processes in the Aksu River Basin, and the simulated results are in good agreement with observed data. Based on modeling hydrological data, the runoff components and their response to climate change were analyzed. The results show: (1) Glacial meltwater recharge accounts for 29.2% of runoff for the Toxkan River, and 58.7% for the Kunma Like River. (2) The annual total runoff of two branches of the Aksu River show increasing trends, increased by about 43.1%, 25.95×106 m3 per year for the Toxkan River and by 13.1%, 14.09×106 m3 per year for the Kunma Like River during the latter 38 years. (3) The annual total runoff of the Toxkan River increased simply due to the increase of non-glacial runoff, while the increase of annual total runoff of the Kunma Like River was the result of increasing glacial (42%) and non-glacial runoff (58%).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号