首页> 中文期刊> 《光学精密工程》 >磁悬浮飞轮用可重复抱式锁紧装置

磁悬浮飞轮用可重复抱式锁紧装置

         

摘要

As the integral carbon fiber slice for a locking device is not easy to disassemble and the one-off locking device can not repeat locking/unlocking in a magnetic bearing flywheel, a novel repeated clamping locking device based on a separate elastic slice as release mechanism was presented. The composition,, operating principles and the scheme of elastic slice for the device were introduced. To be equivalent the elastic slice for a cantilever beam-mass mode, the static and dynamic analysis was performed for the device. Upon this, the structure parameters of high sensitivity were selected as design variables, and the structural strength, unlocking force and the first resonance frequency were concerned. Then, the software of multidisciplinary design optimization (iSIGHT) was used for the optimization of elastic slice. The results indicate that the total mass of elastic slices has been reached to the minimum of 207 g corresponding to 10 elastic slices, which is reduced by 56. 6% compared with initial mass of 477 g. According to optimization results, a locking device was manufactured and it isverified by sine-swept vibration and random vibration. The verification shows that the locking device can protect magnetic bearing flywheels and has great significance and values for space applications of magnetic bearing flywheels.%针对磁悬浮飞轮锁紧装置用整体碳纤维弹片不便拆卸和一次性锁紧装置不可重复锁紧/解锁的缺点,提出了一种基于分立式弹片释放机构的可重复抱式锁紧装置.介绍了锁紧装置的结构、工作原理和弹片方案,通过将弹片释放机构等效为悬臂梁质量块模型,对其进行了静力学和动力学分析.基于分析结果,选择灵敏度较高的结构参数作为优化设计变量,并考虑结构强度、解锁力和一阶共振频率,以软件iSIGHT为平台,对弹片进行多学科优化设计.优化结果表明,弹片个数为10时,弹片总质量达到最小为207 g,比初始质量477 g减少了56.6%.根据优化结果加工了一套锁紧装置,并利用正弦扫频振动和随机振动试验对其进行验证,验证结果显示该锁紧装置能够有效保护飞轮系统.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号