首页> 中文期刊> 《光:科学与应用(英文版)》 >In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

         

摘要

Monochromatization of high-harmonic sources has opened fascinating perspectives regarding time-resolved photoemission from all phases of matter.Such studies have invariably involved the use of spectral filters or spectrally dispersive optical components that are inherently lossy and technically complex.Here we present a new technique for the spectral selection of near-threshold harmonics and their spatial separation from the driving beams without any optical elements.We discover the existence of a narrow phase-matching gate resulting from the combination of the non-collinear generation geometry in an extended medium,atomic resonances and absorption.Our technique offers a filter contrast of up to 104 for the selected harmonics against the adjacent ones and offers multiple temporally synchronized beamlets in a single unified scheme.We demonstrate the selective generation of 133,80 or 56 nm femtosecond pulses from a 400-nm driver,which is specific to the target gas.These results open new pathways towards phase-sensitive multi-pulse spectroscopy in the vacuum-and extreme-ultraviolet,and frequencyselective output coupling from enhancement cavities.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号