首页> 中文期刊> 《光:科学与应用(英文版)》 >Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens

Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens

         

摘要

A rapid,precise method for identifying waterborne pathogens is critically needed for effective disinfection and better treatment.However,conventional methods,such as culture-based counting,generally suffer from slow detection times and low sensitivities.Here,we developed a rapid detection method for tracing waterborne pathogens by an innovative optofluidic platform,a plasmonic bacteria on a nanoporous mirror,that allows effective hydrodynamic cell trapping,enrichment of pathogens,and optical signal amplifications.We designed and simulated the integrated optofluidic platform to maximize the enrichment of the bacteria and to align bacteria on the nanopores and plasmonic mirror via hydrodynamic cell trapping.Gold nanoparticles are self-assembled to form antenna arrays on thesurface of bacteria,such as Escherichia coli and Pseudomonas aeruginosa,by replacing citrate with hydroxylamine hydrochloride in order to amplify the signal of the plasmonic optical array.Owing to the synergistic contributions of focused light via the nanopore geometry,self-assembled nanoplasmonic optical antennas on the surface of bacteria,and plasmonic mirror,we obtain a sensitivity of detecting E.coli as low as 102 cells/ml via surface-enhanced Raman spectroscopy.We believe that our label-free strategy via an integrated optofluidic platform will pave the way for the rapid,precise identification of various pathogens.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号