首页> 中文期刊> 《金属学报:英文版》 >FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling

FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling

         

摘要

The influence of temperature on the hydrogen diffusion behavior in X80 pipeline steel during stacking for slow cooling was studied using electrochemical penetration method, the temperature field and the hydrogen diffusion in this pipeline steel during stacking for slow cooling were simulated by ABAQUS finite element method(FEM) software. The results show that in this process there is a reciprocal relationship between the natural logarithm of hydrogen diffusion coefficient and temperature. The cooling rate decreases gradually with the increase of steel plate thickness. The hydrogen content is higher at high temperature(500–400 °C) than that in low temperature region(300–100 °C). The FEM simulation results are consistent with the experimental ones, and the model can be used to predict the hydrogen diffusion behavior in industrial production of X80 pipeline steel.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号