首页> 中文期刊> 《农业科学学报(英文版)》 >A New Method to Determine Central Wavelength and Optimal Bandwidth for Predicting Plant Nitrogen Uptake in Winter Wheat

A New Method to Determine Central Wavelength and Optimal Bandwidth for Predicting Plant Nitrogen Uptake in Winter Wheat

         

摘要

Plant nitrogen (N) uptake is a good indicator of cropNstatus. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plantNuptake (gNm-2) in winter wheat (Triticum aestivum L.). The data were collected from the ground-based hyperspectral reflectance measurements in eight field experiments on winter wheat of different years, eco-sites, varieties,Nrates, sowing dates, and densities. The plantNuptake index (PNUI) based on NDVI of 807 nm combined with 736 nm was selected as the optimal vegetation index, and a linear model was developed with R2 of 0.870 and RMSE of 1.546 gNm-2 for calibration, and R2 of 0.834, RMSE of 1.316 gNm-2, slope of 0.934, and intercept of 0.001 for validation. Then, the effect of the bandwidth of central wavelengths on model performance was determined based on the interaction between central wavelength and bandwidth expansion. The results indicated that the optimal bandwidth varies with the changes of the central wavelength and with the interaction between the two bands in one vegetation index. These findings are important for prediction and diagnosis of plantNuptake more precise and accurate in crop management.

著录项

  • 来源
    《农业科学学报(英文版)》 |2013年第5期|788-802|共15页
  • 作者单位

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Jiangsu Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Jiangsu Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Jiangsu Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Jiangsu Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Jiangsu Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Jiangsu Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Jiangsu Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号