首页> 中文期刊> 《环境科学学报:英文版》 >Enhancement of the flux for polypropylene hollow fiber membrane in a submerged membrane-bioreactor by surface modification

Enhancement of the flux for polypropylene hollow fiber membrane in a submerged membrane-bioreactor by surface modification

         

摘要

To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the plasma-induced immobilization of poly(N-vinyl-2-pyrrolidone) (PVP) and the plasma treatment with different gases respectively. Attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Water contact angle was measured by the sessile drop method. It was found that the water contact angle was 128.8, 72.3, 62.7, 74.4, 79.1, 86.3, and 71.3° for the nascent, PVP-immobilized, air, O2, Ar, CO2 and H2O plasma treated PPHFMM, respectively. The SMBR was operated at fixed transmembrane pressure to determine the limiting flux for the PPHFMM before and after surface modification. Results showed that the limiting flux appeared to be 103, 159, 117, 133, 136, 121 and 152 L/(m2·h) for the nascent, PVP-immobilized, air, O2, Ar, CO2 and H2O plasma treated PPHFMM, respectively. After continuous operation for about 50 h in the SMBR, the antifouling characteristics were improved to some extent.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号