首页> 中文期刊> 《环境科学学报:英文版》 >Reduced graphene oxide-nano zero value iron(rGO-nZVI) micro-electrolysis accelerating Cr(Ⅵ) removal in aquifer

Reduced graphene oxide-nano zero value iron(rGO-nZVI) micro-electrolysis accelerating Cr(Ⅵ) removal in aquifer

         

摘要

Nanoscale zero-valent iron(nZVI) assembled on graphene oxide(GO)(rGO-nZVI) composites were synthesized by reduction of GO and ferrous ions with potassium borohydride,for use in Cr(VI) removal from aqueous solution.The results showed that the two-dimensional structure of GO could provide a skeleton support for Fe^0,thus overcoming the bottleneck of aggregation for nZVI.Also,rGO-nZVI would form a ferric-carbon micro-electrolysis system in Cr(VI)-contaminated aquifers,enhancing and accelerating electron transfer,exhibiting high rate and capacity for Cr(VI) removal.The optimum dosage of the applied r GO-nZVI was linearly correlated with the initial Cr(VI) concentration.Characterization of rGO-nZVI before and after reaction with Cr(VI) revealed the process of Cr(VI) removal:r GO-nZVI firstly transferred electrons from Fe^0 cores via their Fe(II)/Fe(III) shells to the GO sheet;there,negatively charged Cr(VI) received electrons and changed into positively charged Cr(III),which was adsorbed by the negatively charged GO sheet,avoiding the capping and passivating of nZVI.rGO-nZVI formed a good electrically conductive network,and thus had long-term electron releasing properties,which was important for groundwater remediation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号