首页> 中文期刊> 《环境科学学报:英文版》 >Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks

Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks

         

摘要

Nanoporous carbons(NPCs) derived from metal–organic frameworks(MOFs) are attracting increasing attention in many areas by virtue of their high specific surface area, large pore volume and unique porosity. The present work reports the preparation of an NPC with high surface area(1731 m^2/g) and pore volume(1.68 cm^3/g) by direct carbonization of MOF-5. We examined the adsorption of three typical contaminants from aqueous solutions, i.e., sulfamethoxazole(SMX),bisphenol A(BPA) and methyl orange(MO), by using the as-prepared NPC. The results demonstrated that NPC could adsorb the contaminants effectively, with adsorption capacity(qm) of 625 mg/g(SMX), 757 mg/g(BPA) and 872 mg/g(MO), respectively. These values were approximately 1.0-3.2 times higher than those obtained for single-walled carbon nanotubes(SWCNTs) and commercial powder active carbon(PAC) under the same conditions. With its high surface area and unique meso/macropore structure, the enhanced adsorption of NPC most likely originates from the cooperative interaction of a pore-filling mechanism, electrostatic interaction,and hydrogen bonding. In particular, the p H value has a crucial impact on adsorption, suggesting the significant contribution of electrostatic interaction between NPC and the contaminants. This study provides a proof-of-concept demonstration of MOF-derived nanoporous carbons as effective adsorbents of contaminants for water treatment.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号