首页> 中文期刊> 《环境科学学报:英文版》 >Promotional catalytic activity and reaction mechanism of Ag-modified Ce_(0.6)Zr_(0.4)O_(2) catalyst for catalytic oxidation of ammonia

Promotional catalytic activity and reaction mechanism of Ag-modified Ce_(0.6)Zr_(0.4)O_(2) catalyst for catalytic oxidation of ammonia

         

摘要

Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of adsorption-transformationdesorption process were investigated over the Ag-impregnated catalysts for lowtemperature selective catalytic oxidation of ammonia(NH_(3)-SCO).The optimal 5 wt.%Ag/Ce_(0.6)Zr_(0.4)O_(2) catalyst presented good NH_(3)-SCO performancewith>90% NH_(3) conversion at temperature(T)≥250°C and 89% N_(2) selectivity.Despite the irregular block shape and underdeveloped specific surface area(∼60m2/g),the naked and Ag-modified Ce_(0.6)Zr_(0.4)O_(2) solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)(mapping),N_(2) adsorptiondesorption test and X-ray diffraction(XRD).H2 temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO_(2) reducibility and synergistic Ag0/Ag+and Ce^(4+)/Ce^(3+)redox cycles.Besides,Ag+/Ag_(2)O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia.NH3-temperature programmed desorption(NH_(3)-TPD)showed more adsorption-desorption capacity to ammoniawere provided by physical,weakandmedium-strong acid sites.Diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure,during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction(i-SCR)reactions were proposed.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号