首页> 中文期刊> 《环境科学学报:英文版》 >Humic acid-enhanced electron transfer of in vivo cytochrome c as revealed by electrochemical and spectroscopic approaches

Humic acid-enhanced electron transfer of in vivo cytochrome c as revealed by electrochemical and spectroscopic approaches

         

摘要

Out-membrane cytochrome c(Cyt c) plays an important role carrying electrons from the inside of microbes to outside electron acceptors. However, the active sites of Cyt c are wrapped by nonconductive peptide chains, hindering direct extracellular electron transfer(EET). Humic acids(HA) have been previously proven to efficiently facilitate EET. However, the inherent mechanism of HAstimulated EET has not been well interpreted. Here, to probe the mechanism behind HA-stimulated EET, we studied the interaction between Cyt c and HA. The attachment of active in vivo Cyt c on a graphite electrode was achieved when MR-1 cells were self-assembled on the electrode surface. Pure horse-heart Cyt c was covalently immobilized on an electrode via 4-aminobenzoic acid to create an active in vitro Cyt c-enriched surface. Cyclic voltammetric measurements and scanning electron microscopy confirmed the immobilization of bacterial cells and pure Cyt c protein. Electrochemical methods revealed that HA could enhance the electrocatalytic current of both in vitro and in vivo Cyt c towards oxygen and thiosulfate, suggesting enhanced EET. The blue-shifted soret band in the UV-Vis spectra and changes in the excitation/emission matrix fluorescence spectra demonstrated that Cyt c interacted with HA to form organic complexes via electrostatic or hydrogen-bonding interactions. The results will help understand electron shuttle-stimulated EET and develop bacteriabased bioremediation and bioenergy technologies.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号