首页> 中文期刊> 《电子科技学刊》 >Improved Face Recognition Method Using Genetic Principal Component Analysis

Improved Face Recognition Method Using Genetic Principal Component Analysis

         

摘要

An improved face recognition method is proposed based on principal component analysis(PCA) compounded with genetic algorithm(GA),named as genetic based principal component analysis(GPCA).Initially the eigenspace is created with eigenvalues and eigenvectors.From this space,the eigenfaces are constructed,and the most relevant eigenfaces have been selected using GPCA.With these eigenfaces,the input images are classified based on Euclidian distance.The proposed method was tested on ORL(Olivetti Research Labs) face database.Experimental results on this database demonstrate that the effectiveness of the proposed method for face recognition has less misclassification in comparison with previous methods.

著录项

  • 来源
    《电子科技学刊》 |2010年第4期|372-378|共7页
  • 作者

    E.Gomathi; K.Baskaran;

  • 作者单位

    1. Department of Electronic and Communication Engineering;

    Karpagam Engineering College 2. Department of Computer Science and Engineering;

    Government College of Technology;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类 TP391.41;
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号