首页> 外文期刊>现代水文学期刊(英文) >Effects of Model Structural Complexity and Data Pre-Processing on Artificial Neural Network (ANN) Forecast Performance for Hydrological Process Modelling
【24h】

Effects of Model Structural Complexity and Data Pre-Processing on Artificial Neural Network (ANN) Forecast Performance for Hydrological Process Modelling

机译:模型结构复杂性和数据预处理对水文过程建模的人工神经网络(ANN)预测性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The choice of a particular Artificial Neural Network (ANN) structure is a seemingly difficult task;worthy of relevance is that there is no systematic way for establishing a suitable architecture. In view of this, the study looked at the effects of ANN structural complexity and data pre-processing regime on its forecast performance. To address this aim, two ANN structural configurations: 1) Single-hidden layer, and 2) Double-hidden layer feed-forward back propagation network were employed. Results obtained revealed generally that: a) ANN comprised of double hidden layers tends to be less robust and converges with less accuracy than its single-hidden layer counterpart under identical situations;b) for a univariate time series, phase-space reconstruction using embedding dimension which is based on dynamical systems theory is an effective way for determining the appropriate number of ANN input neurons, and c) data pre-processing via the scaling approach excessively limits the output range of the transfer function. In specific terms considering extreme flow prediction capability on the basis of effective correlation: Percent maximum and minimum correlation coefficient (Rmax% and Rmin style="font-family:Verdana;font-size:12px;">% style="font-family:Verdana;font-size:12px;">), on the average for one-day ahead forecast during the training and validation phases respectively for the adopted network structures: style="font-family:Verdana;font-size:12px;">8 7 5 ( style="font-family:Verdana;font-size:12px;">i.e. style="font-family:Verdana;font-size:12px;">, 8 input nodes, 7 nodes in the hidden layer, and 5 output nodes in the output layer) style="font-family:Verdana;font-size:12px;">, style="font-family:Verdana;font-size:12px;">8 5 2 5 (8 nodes in the input layer, 5 nodes in the first hidden layer, 2 nodes in the second hidden layer, and 5 nodes in the output layer) style="font-family:Verdana;font-size:12px;">, and style="font-family:Verdana;font-size:12px;">8 4 3 5 (8 nodes in the input layer, 4 nodes in the first hidden layer, 3 nodes in the second hidden layer, and 5 nodes in the output layer) style="font-family:Verdana;font-size:12px;"> gave: style="font-family:Verdana;font-size:12px;">101.2 style="font-family:Verdana;font-size:12px;">, style="font-family:Verdana;font-size:12px;">99.4 style="font-family:Verdana;font-size:12px;">; style="font-family:Verdana;font-size:12px;">100.2 style="font-family:Verdana;font-size:12px;">, style="font-family:Verdana;font-size:12px;">218.3 style="font-family:Verdana;font-size:12px;">; style="font-family:Verdana;font-size:12px;">93.7 style="font-family:Verdana;font-size:12px;">, style="font-family:Verdana;font-size:12px;">95.0 style="font-family:Verdana;font-size:12px;"> in all instances irrespective of the training algorithm ( style="font-family:Verdana;font-size:12px;">i.e. style="font-family:Verdana;font-size:12px;">, pooled). On the other hand, in terms of percent of correct event prediction, the respective performances of the models for both low and high flows during the training and validation phases, respectively were: style="font-family:Verdana;font-size:12px;">0.78, 0.96: 0.65, 0.87;0.76, 0.93: 0.61, 0.83; style="font-family:Verdana;font-size:12px;">and style="font-family:Verdana;font-size:12px;"> 0.79, 0.96: 0.65, 0.87 style="font-family:Verdana;font-size:12px;">. Thus, it suffices to note that on the basis of coherence or regularity of prediction consistency, the ANN model: style="font-family:Verdana;font-size:12px;">8 4 3 5 style="font-family:Verdana;font-size:12px;"> performed better. This implies that though the adoption of large hidden layers vis-à-vis corresponding large neuronal signatures could be counter-productive because of network over-fitting, however, it may provide additional representational power. Based on the findings, it is imperative to note that ANN model is by no means a substitute for conceptual watershed style="font-family:Verdana;">modelling, therefore, exogenous variables should be incorporated in streamflow modelling and forecasting exercise because of their hydrologic evolutions.
机译:特定人工神经网络(ANN)结构的选择是一个看似艰巨的任务;值得相关的是,没有系统建立合适的架构。鉴于此,该研究介绍了ANN结构复杂性和数据预处理制度对其预测性能的影响。为了解决此目的,使用两个ANN结构配置:1)采用单隐藏层和2)双隐藏层前馈回传输网络。得到的结果通常揭示:a)由双隐藏层组成的ANN趋于较强的鲁棒性,并且在相同情况下的单隐式层对应物的较低精度较小; b)用于使用嵌入尺寸的单变量时间序列,相位空间重建基于动态系统理论是用于确定适当数量的ANN输入神经元的有效方法,以及C)通过缩放方法预处理的数据预处理过度限制传递函数的输出范围。具体术语在基于有效相关性的基础上考虑极端流量预测能力:百分比最大和最小相关系数(RMAX%和RMIN style =“font-family:verdana;字体大小:12px;”>),平均在培训和验证阶段期间为采用的网络结构进行平均预测: style =“font-family:verdana;字体大小:12px;”> 8 7 5( style =“font-family:verdana;字体大小:12px ;“> IE style =”font-family:verdana;字体大小:12px;“>,8个输入节点,隐藏层中的7个节点,输出中的5个输出节点图层) style =“font-family:verdana;字体大小:12px;”>, style =“font-family:verdana;字体 - 尺寸:12px;“> 8 5 2 5(在输入层中的8个节点,在第一个隐藏层中的5个节点,第二个隐藏层中的2个节点,输出层中的5个节点) style =“font-family:verda na;字体大小:12px;“>,和 style =”font-family:verdana;字体大小:12px;“> 8 4 3 5(输入层中的8个节点8个节点, 4个节点在第一个隐藏层中的节点,第二个隐藏层中的3个节点,输出层中的5个节点) style =“font-family:verdana;字体大小:12px;” >给出: <跨度样式=“font-family:verdana;字体大小:12px;”> 101.2 style =“font-family:verdana;字体-size:12px;“>, style =”font-family:verdana;字体大小:12px;“> 99.4 style =”font-家庭:Verdana;字体大小:12px;“>; style =”font-family:verdana;字体大小:12px;“> 100.2 style =“font-family:verdana;字体大小:12px;”>, style =“font-family:verdana;字体大小:12px;”> 218.3 < / b> style =“font-family:verdana;字体大小:12px;”>; style =“font-family:verdana;字体大小:12px;”> 93.7 style =“font-family:verdana;字体大小:12px;”>, style =“font-family:verdana;字体大小: 12px;“> 95.0 style =“font-family:verdana;字体大小:12px;”>在所有情况下,无论训练算法( style =“font-family:verdana ;字体大小:12px;“> IE style =”font-family:verdana;字体大小:12px;“>,汇集)。另一方面,就正确事件预测的百分比,分别在训练和验证阶段期间低流量和高流量的模型的相应性能分别为: <跨度样式=“字体 - 家庭:verdana;字体大小:12px;“> 0.78,0.96:0.65,0.87; 0.76,0.93:0.61,0.83; d style =”font-family:verdana;字体大小:12px;“>”和 y style =“font-family:verdana;字体大小:12px;”> 0.79,0.96:0.65,0.87 <跨度样式=“font-family:verdana;字体大小:12px;”>。因此,它足以注意,基于预测一致性的相干性或规律性,ANN模型: <跨度样式=“font-family:verdana;字体大小:12px;”> 8 4 3 5 style =“font-family:verdana;字体大小:12px;”>表现更好。这意味着,尽管采用了大型隐藏层Vis-in-Vis相应的大型神经元签名,但由于网络过度拟合,因此可能是反效率,但是,它可以提供额外的代表性。基于调查结果,必须注意的是,ANN模型绝不是概念流域的替代品 <跨度样式=“font-family:verdana;”>建模,因此,外源变量应该由于水文的演进而在流流模型和预测锻炼中结合在一起。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号