首页> 中文期刊> 《材料科学与应用期刊(英文)》 >Co-Doped Rare-Earth (La, Pr) and Co-Al Substituted M-Type Strontium Hexaferrite: Structural, Magnetic, and Mossbauer Spectroscopy Study

Co-Doped Rare-Earth (La, Pr) and Co-Al Substituted M-Type Strontium Hexaferrite: Structural, Magnetic, and Mossbauer Spectroscopy Study

         

摘要

The present study investigates the influence of La3+ and Pr3+ doping on the structural, magnetic properties, and hyperfine fields of Sr0.7RE0.3Fe12-2x CoxAlxO19, (RE: La3+ and Pr3+, x = 0.0 - 0.8) hexaferrite compounds prepared via auto-combustion technique. The XRD analysis shows a linear decrease in a and c lattice and unit cell volume contraction with the content x. The room temperature magnetic study shows that for the Pr3+ doped Sr0.7Pr0.3Fe12-2x CoxAlxO19 (Pr3+-SrM), the magnetization value monotonically decreases while for La3+ doped Sr0.7La0.3Fe12-2xCoxAlxO19 (La3+-SrM) magnetization value shows a noticeable increase in magnetization value with x. The coercivity of the Pr3+-SrM compound was observed to decrease while that of the La3+-SrM compound showed a marked 40% increase at x = 0.2 (~5829 Oe) in comparison to undoped SrFe12O19 (~3918 Oe). A difference in Curie temperature was also observed, with Tc ~ 525°C at x = 0.4 for Pr3+-SrM and Tc = 505°C for x = 0.4 for La3+-SrM compound. The observed differences in magnetic properties have been explained on the basis of the site occupancy of Co2+ and Al3+ in the presence of rare-earth ions. The presence of non-magnetic rare-earth ion, La3+, improved saturation magnetization, and coercivity and deemed suitable replacement for Sr2+. The hyperfine parameters namely quadrupole shift showed a decrease with the La3+ or Pr3+ doping independent of (Co2+-Al3+) ions doping. Overall, the Mossbauer analysis suggests that the (Co2+-Al3+) impurities prefer occupancy at 2a site.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号