首页> 中文期刊> 《中国海洋工程:英文版》 >A RANS-VoF Numerical Model to Analyze the Output Power of An OWC-WEC Equipped with Wells and Impulse Turbines in A Hypothetical Sea-State

A RANS-VoF Numerical Model to Analyze the Output Power of An OWC-WEC Equipped with Wells and Impulse Turbines in A Hypothetical Sea-State

         

摘要

Wave energy is a renewable source with significant amount in relation to the global demand. A good concept of a device applied to extract this type of energy is the onshore oscillating water column wave energy converter(OWC-WEC). This study shows a numerical analysis of the diameter determination of two types of turbines, Wells and Impulse, installed in an onshore OWC device subjected to a hypothetical sea state. Commercial software FLUENT?,which is based on RANS-VoF(Reynolds-Averaged Navier-Stokes equations and Volume of Fluid technique), is employed. A methodology that imposes air pressure on the chamber, considering the air compressibility effect, is used. The mathematical domain consists of a 10 m deep flume with a 10 m long and 10 m wide OWC chamber at its end(geometry is similar to that of the Pico's plant installed in Azores islands, Portugal). On the top of the chamber, a turbine works with air exhalation and inhalation induced by the water free surface which oscillates due to the incident wave. The hypothetical sea state, represented by a group of regular waves with periods from 6 to 12 s and heights from 1.00 to 2.00 m(each wave with an occurrence frequency), is considered to show the potential of the presented methodology. Maximum efficiency(relation between the average output and incident wave powers) of46% was obtained by using a Wells turbine with the diameter of 2.25 m, whereas the efficiency was 44% by an Impulse turbine with the diameter of 1.70 m.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号