首页> 中文期刊> 《物理学报》 >Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响∗

Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响∗

         

摘要

Diamond coating has many excellent properties as the same as those of the natural diamond, such as extreme hard-ness, high thermal conductivity, low thermal expansion coefficient, high chemical stability, and good abrasive resistance, which is considered as the best tool coating material applied to the high-silicon aluminum alloy cutting. We can use the hot filament chemical vapor deposition method (HFCVD) to deposit a 2—20 µm diamond coating on the cemented carbide tool to improve the cutting performance and increase the tool life significantly. Many experiments have proved that the existence of cobalt phase can weaken the adhesive strength of diamond coating. However, we still lack a perfect theory to explain why the Co element can reduce the adhesive strength of diamond coating is still lacking. What we can do now is only to improve the adhesive strength of diamond coating by doing testing many times in experiments. Compared with these traditional experiments, the first principles simulation based on quantum mechanics can describe the microstructure property and electron density of materials. It is successfully used to investigate the surface, interface, electron component, and so on etc. We can also use this method to study the interface problem at an atomic level. So the first principles based upon density functional theory (DFT) is used to investigate the influence of cobalt binding phase in cemented carbide substrate on adhesive strength of diamond coating. In this article, we uses Material Studios software to build WC/diamond and WC-Co/diamond interface models to evaluate the influence of cobalt phase on the adhesive strength of diamond coating with CASTEP program which can calculate the most stablest structure of film-substrate interface. We use PBE functional form to obtain the exchange potential and relevant potential, and to solve the self-consistent Kohn-Sham equations. We calculate the interfacial bonding energy, analyse the electron density of diamond coating and the bond Mulliken population of diamond film-substrate interface. The results show that the interfacial bonding energy of WC/diamond is 6.74 J/m2 and that of WC-Co/diamond is 5.94 J/m2, which implies that the adhesive strength of WC/diamond is better than that of WC-Co/diamond. We also find that Co element can transfer the charges near the interface of WC/diamond model when the magnetic Co element exists at the WC/diamond interface. As a result, the polarity of tungsten element in tungsten carbide and the polarity of carbon element in diamond coating near the interface turn to be identical polarity, and then the charge density of tungsten in cemented carbide changes from 0.430 e/A3 to 0.201 e/A3 and the charge density of Carbon in diamond changes from −0.045 e/A3 to 0.037 e/A3, and they exclude to each other, so the distance of interface becomes larger than that from the WC/diamond model, which changes from 2.069 Åto 3.649 Å. This can explain why the existence of Co element can weaken the adhesive strength of diamond coating. Meanwhile, Mulliken population analyses show that the bond strength of WC-Co/diamond at the interface is smaller than that of WC/diamond. So this can prove that the cobalt binding phase in cemented carbide substrate can weaken the adhesive strength of diamond coating, and then we need to do some pretreatments in order to reduce the cobalt binding phase in the cemented carbide substrate before depositing diamond coating.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号