首页> 中文期刊> 《物理学报》 >低密度泡沫金提升黑腔腔壁再发射率的实验研究∗

低密度泡沫金提升黑腔腔壁再发射率的实验研究∗

         

摘要

It is important to improve the hohlraum radiation temperature for the research of high energy density physics, especially for study of inertial confinement fusion. Increasing the wall reemission ratio is an effective way to improve the temperature. It is found in theory that low density foam could reduce hohlraum wall energy loss, and then increase hohlraum temperature. In previous studies, experiments have shown that laser-to-X-ray conversion is enhanced by Au foam. However, improving reemission ratio is more important to increase hohlraum radiation temperature, because most of energy is lost in the wall. In this paper, we report our experiments carried out on SGII prototype to compare the X-ray flux reemitted by Au foam and that by Au. For the experimental design, Au solid and Au foam are irradiated symmetrically along the axis by hohlraum radiation source Tr(t), which is assessed by broadband X-ray spectrometer flat-response X-ray diodes. The measured peak temperature is about 190 eV. Reemission flux from sample is measured by transmission grating spectrometer (TGS). The space-resolved image for pure Au sample shows that the hohlraum radiation is asymmetrical along the axis in the experimental conditions, temperature of top is higher than that at the bottom, which is consistent with simulation results obtained by using IRAD3D code. In order to compare the reemission flux from Au solid sample and that from Au foam sample in same conditions, we need to correct the symmetry of hohlraum radiation. By multiplying the ratio of top flux to bottom flux in pure Au target by the bottom flux in Au-Au foam target, where Au foam is on, we make sure that they are ablated by the same radiation source. The calculated results show that X-ray flux is increased by 20%by Au foam of 0.4 g/cc density when the hohlraum temperature is 190 eV. The typical observed time-integrated X-ray reemission spectra for Au solid and Au foam by TGS are also shown. We see that N-band and O-band reemission are clearly enhanced by Au foam, and the O-band reemission is almost the same as M-band reemission. The increased flux concentrates below 1 keV of the soft X-ray emission. The self-similar solution results and MULTI 1D simulation results show that the wall loss energy fraction is saved by Au foam, whose relation to reemission flux can be described by a simple expression. The theoretical solution shows that the emission flux increases about 10%, and the MULTI simulation indicates that the emission flux increases about 6.8%. They are in qualitative agreement with the experiments results. These results show an alluring prospect for Au foam to be used as hohlraum wall.

著录项

  • 来源
    《物理学报》 |2016年第1期|015202-1-015202-7|共7页
  • 作者单位

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

    中国工程物理研究院激光聚变研究中心;

    绵阳 621900;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    再发射率; 金泡沫; 黑腔; 辐射烧蚀;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号