首页> 中文期刊> 《力学学报:英文版》 >On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation

On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation

摘要

The phenomenological flow theory of higher-order strain gradient plasticity proposed by Fleck and Hutchinson(J.Mech.Phys.Solids,2001)and then improved by Fleck and Willis(J.Mech.Phys.Solids,2009)is used to investigate the surface-passivation problem and micro-scale plasticity.An extremum principle is stated for the theory involving one material length scale.To solve the initial boundary value problem,a numerical scheme based on the framework of variational constitutive updates is developed for the strain gradient plasticity theory.The main idea is that,in each incremental time step,the value of the effective plastic strain is obtained through the variation of a functional in regard to effective plastic strain,provided the displacement or deformation gradient.Numerical results for elasto-plastic foils under tension and bending,thin wires under torsion,are given by using the minimum principle and the numerical scheme.Implications for the role of dissipative gradient effect are explored for three non-proportional loading conditions:(1)stretch-passivation problem,(2)bending-passivation problem,and(3)torsion-passivation problem.The results indicate that,within the Fleck-Hutchinson-Willis theory,the dissipative length scale controls the strengthening size effect,i.e.the increase of initial yielding strength,while the surface passivation gives rise to an increase of strain hardening rate.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号