首页> 外文学位 >The dynamical system approach to traffic assignment: The attainability of equilibrium and its application to traffic system management.
【24h】

The dynamical system approach to traffic assignment: The attainability of equilibrium and its application to traffic system management.

机译:交通分配的动态系统方法:平衡的可实现性及其在交通系统管理中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis we formulate the traffic assignment problem through a dynamical system approach. All exogenous factors are presumed to be constant over time and equilibrium is being pursued through a day-to-day learning process. Travellers' knowledge of the network is represented by their perceived costs on individual routes. Route choice on a day is determined by the perceived route costs on that day. If the actual travel costs are identical to the perceived costs, then equilibrium is achieved; otherwise, travellers update their perceived costs for the route choice next day.;The traffic dynamics can be formulated by a recurrence function of the vector of perceived costs. Fixed point in the dynamical system is equivalent to the stochastic user equilibrium in the static model. Equilibrium stability is analysed by a linearization of the dynamical system around equilibrium. Stability requires that the corresponding Jacobian matrix, when evaluated at the equilibrium point, has its eigenvalues (real or complex) all within the unit circle. Lyapunov function can also be utilized in stability analysis. Stability is important because unstable equilibrium is transient. In cases of instability, it is usually possible to shift the unstable equilibrium to a stable equilibrium by appropriately modifying the network.;Even for stable equilibrium, only points within its attraction basin are attracted to the equilibrium. Some topological analysis shows that the attraction basin of a stable equilibrium is always open. Furthermore, if all points in the state space are attracted to equilibria, one or another, then the boundary of the attraction basin for a stable equilibrium is formed by trajectories to unstable equilibria. Therefore, we can identify the exact range of attraction basins for stable equilibria by tracing back the dynamical evolution to unstable equilibria. Once this is done, the state space can be partitioned into a number of subsets, each representing the attraction basin of an equilibrium point.;The most important implication of network change for traffic system management is that temporary network change may have long term effects on the state of the system, a property which we call irreversibility. Particular attention should then be paid to irreversible temporary changes, whether planned or incidental. These changes, even though imposed on the system only temporarily, can permanently relocate the state of the system. Therefore it is essential that the planned changes should be well studied in advance and then carefully implemented, while remedies should be carried out for irreversible incidental changes.;Besides equilibrium, there are also cyclic and chaotic attractors. These nonequilibrium attractors share similar characteristics as equilibrium in terms of being the limit set of a trajectory. A cyclic attractor with a period of n days is an equilibrium point of the n-days-to- n-days mapping. Studying these attractors may help us understand the non-stationary flow in observed day-to-day traffic data. We also provide criteria for the case where equilibrium is the only type of attractor. When such criteria are satisfied we can eliminate the possibility of non-equilibrium attractors and focus instead on equilibrium attractors.;In summary, the concept of dynamic equilibrium is formulated to replace the traditional static equilibrium, which only concerns the state of equilibrium. The dynamical approach in this thesis addresses the process of pursuing and obtaining equilibrium, i.e. how disequilibrium states evolve towards equilibrium. It enables the analysis on equilibrium stability and attainability. In particular, this thesis shows how the equilibrium's attraction basin can be determined or estimated. Evolution starting from outside the attraction basin does not converge to the equilibrium. A temporary network alteration can then be made to divert the evolution to equilibrium. This implies that changes on the network, even temporary, can have long term effects on the system state. To avoid undesirable consequences, traffic management agency should assess the impact of planned network modification before implementing it. (Abstract shortened by UMI.)
机译:在本文中,我们通过动态系统方法来制定交通分配问题。假定所有外在因素都随时间变化,并且通过日常学习过程寻求平衡。旅行者对网络的了解以他们在各个路线上的感知成本来表示。一天中的路线选择取决于当天的感知路线成本。如果实际差旅费用与所预计的费用相同,则达到平衡。否则,旅客将在第二天为路线选择更新其感知成本。交通动态可以通过感知成本向量的递归函数来制定。动态系统中的固定点等于静态模型中的随机用户平衡。通过围绕平衡的动力学系统的线性化来分析平衡稳定性。稳定性要求在平衡点评估相应的雅可比矩阵时,其特征值(实数或复数)都在单位圆内。 Lyapunov函数也可以用于稳定性分析。稳定性很重要,因为不稳定的平衡是短暂的。在不稳定的情况下,通常可以通过适当修改网络将不稳定平衡转变为稳定平衡。即使对于稳定平衡,也只有其吸引盆内的点被吸引到平衡。某些拓扑分析表明,稳定平衡的吸引盆地始终是开放的。此外,如果状态空间中的所有点都被吸引到一个或另一个平衡点,则用于稳定平衡的吸引盆的边界是由到不稳定平衡点的轨迹形成的。因此,我们可以通过将动态演化追溯到不稳定平衡来确定稳定平衡吸引盆的确切范围。完成此操作后,状态空间可以划分为多个子集,每个子​​集代表一个平衡点的吸引盆地。网络变化对交通系统管理的最重要影响是,临时网络变化可能会对网络产生长期影响系统的状态,我们称为不可逆性的属性。然后,应特别注意不可逆的临时更改,无论是计划的还是偶然的。这些更改即使只是暂时施加在系统上,也可以永久地重定位系统的状态。因此,至关重要的是,必须事先对计划的变更进行充分的研究,然后认真执行,同时对不可逆的附带变更应采取补救措施。;除均衡外,还存在周期性和混乱的吸引子。这些非平衡吸引子在轨迹的极限集方面具有与平衡相似的特征。周期为n天的周期性吸引子是n天到n天映射的平衡点。研究这些吸引子可能有助于我们了解观察到的日常交通数据中的非平稳流动。我们还为唯一的吸引子类型提供了标准。当满足这些标准时,我们就可以消除出现非平衡吸引子的可能性,而将注意力集中在平衡吸引子上。总而言之,提出了动态平衡的概念来代替传统的静态平衡,后者只涉及平衡状态。本文中的动力学方法探讨了追求和获得平衡的过程,即不平衡状态如何向平衡发展。它可以分析平衡稳定性和可达到性。特别是,本论文说明了如何确定或估计平衡的吸引盆。从吸引盆地外部开始的演化不会收敛到平衡。然后可以进行临时网络更改以将演变转移到平衡。这意味着网络上的更改,即使是临时的更改,都可能对系统状态产生长期影响。为避免不良后果,流量管理机构应在实施之前评估计划的网络修改的影响。 (摘要由UMI缩短。)

著录项

  • 作者

    Bie, Jing.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号