首页> 外文学位 >An Adaptive Discrete Element Method for Physical Modeling of the Selective Laser Sintering Process
【24h】

An Adaptive Discrete Element Method for Physical Modeling of the Selective Laser Sintering Process

机译:选择性激光烧结过程物理建模的自适应离散元方法

获取原文
获取原文并翻译 | 示例

摘要

Additive Manufacturing (AM) has recently risen to the forefront of research and development of manufacturing industries as it provides engineers with unique capabilities that are completely unheard of in subtractive manufacturing systems. Properties such as the fabrication of complex, otherwise not-manufacturable, structures and non-expensive low-volume fabrication have helped additive manufacturing to climb the popularity ladder in such a way that it is sometimes even referred to as "The third industrial revolution". The main distinction between AM and subtractive manufacturing technologies (milling, etc.) is that instead of cutting material from a solid block, AM systems fabricate the end-use products directly in an additive, layer-wise fashion.;Selective Laser Sintering (SLS) is categorized as a Powder Bed Fusion (PBF) process. PBF processes are a distinct class of AM systems that use powders as their raw material and use a laser/electron beam to fuse the powders together and fabricate the final product. Powdered metals and ceramics are two of the major raw materials used in PBF processes, resulting in a high demand for industry-scale PBF machines. Therefore, characterization of these processes is a research topic worth exploring.;This dissertation presents a comprehensive approach for addressing the ongoing issues in the field of physical modeling of powder bed fusion additive manufacturing processes. In this work, an adaptive discrete element method is proposed for thermo-mechanical simulation of powdered material during the selective laser sintering process. By adding adaptive refinement to the conventional particle level discrete element model, the developed model gets equipped with the capability of improving the simulation speed while maintaining the computational accuracy of the conventional DEM. Empirical models for fusion of powder particle under the influence of the laser beam is also included in the simulation. Moreover, a homogenization technique based on the results of the developed thermo-mechanical method is presented that has the potential of calculating the elastic properties of SLS products. The developed models have been validated, showing that their results follow the expected trends.;This dissertation is an effort in creating a much needed physical modeling tool for complete virtual manufacturing and testing of SLS products. Further development of this idea could significantly increase the impact of AM technologies in a wide range of industrial applications.
机译:由于增材制造(AM)为工程师提供了独特的能力,而增材制造(AM)为工程师提供了在增材制造系统中闻所未闻的独特能力。诸如复杂的,否则无法制造的结构的制造以及廉价的小批量制造等特性已帮助增材制造以有时甚至被称为“第三次工业革命”的方式攀登了普及阶梯。 AM和减法制造技术(铣削等)之间的主要区别在于,AM系统不是直接从实体块中切割材料,而是以叠加,逐层的方式直接制造最终用途产品;选择性激光烧结(SLS) )归类为粉末床融合(PBF)过程。 PBF工艺是一类独特的AM系统,其使用粉末作为原材料,并使用激光/电子束将粉末融合在一起并制成最终产品。粉末金属和陶瓷是PBF工艺中使用的两种主要原材料,因此对工业级PBF机器的需求很高。因此,对这些过程的表征是一个值得探讨的研究课题。本文为解决粉末床熔融增材制造过程的物理建模领域中存在的问题提供了一种综合的方法。在这项工作中,提出了一种自适应离散元方法,用于选择性激光烧结过程中粉末材料的热机械模拟。通过向常规粒子级离散元素模型中添加自适应细化,开发的模型具备在保持常规DEM的计算精度的同时提高仿真速度的能力。模拟中还包括了在激光束影响下粉末颗粒熔化的经验模型。此外,基于开发的热机械方法的结果,提出了一种均质技术,该技术具有计算SLS产品弹性特性的潜力。所开发的模型已经过验证,表明它们的结果符合预期的趋势。本论文致力于创建一个急需的物理建模工具,以完成SLS产品的完整虚拟制造和测试。这种想法的进一步发展可能会大大增加AM技术在广泛的工业应用中的影响。

著录项

  • 作者

    Gobal, Arash.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Mechanical engineering.;Management.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号