首页> 外文学位 >The seismic signature of fractures and faults: Low-frequency shear anelasticity measurements toward determining stress and frictional conditions of reservoir fractures in situ
【24h】

The seismic signature of fractures and faults: Low-frequency shear anelasticity measurements toward determining stress and frictional conditions of reservoir fractures in situ

机译:裂缝和断层的地震特征:低频剪切无弹性测量,用于确定储层裂缝的应力和摩擦条件

获取原文
获取原文并翻译 | 示例

摘要

Stress conditions, asperity geometry, and frictional properties affect the propagation of high amplitude seismic waves across rock fractures and faults. Laboratory evidence suggests that these properties can be measured in active seismic surveys, potentially offering a route to characterizing these important fracture properties in situ. To improve geophysical constraints on the mechanical state of fractures, we modified a unique seismic-frequency (∼0.1 - 100 Hz) apparatus to also include key environmental controls (high strain amplitude and low effective stress). By measuring the modulus and attenuation of numerous rocks before and after tensile fracturing under a range of normal stresses (from 0.25 to 15 MPa), we were able to estimate the seismic detectability of fractures under equivalent effective stress conditions, and show that even well-mated fractures could be monitored with repeatable seismic sources. Utilizing a novel pressure sensitive film technique, we mapped the normal stress distribution on the fracture surface asperities, providing the ability to characterize the contact geometry and estimate the real contact area for each applied normal stress. This is crucial information for understanding and modeling the shear mechanics, which is influenced by surface geometry effects. Connecting past work from the rock physics, nonlinear elasticity, and fault friction communities; we suggest seismic field measurements of strain-dependent softening and frictional attenuation across fractures or faults can constrain their in situ frictional properties. By measuring how the rock fractures' moduli decrease and attenuation increase with strain amplitude, we inverted for the effective asperity area (consistent with real contact area measurements) and friction coefficient using a simple partial slip model. This model can also be extrapolated to fully sliding asperities, predicting the conditions for failure or the critical slip distance in rate-and-state friction. Since these measurements are made using oscillating shear stresses over a range of frequencies, they also contain information about the dynamic, strain-rate dependent frictional response. In fact, measured strain oscillations show strong nonlinearity due to the transition from static to dynamic friction on the sliding regions of the fracture surface. Although rate-and-state friction is commonly used to model fault dynamic friction, this formulation is not capable of capturing the reversal of slip observed over the strain oscillations. In order to overcome this difficulty, we used another frictional parameterization, with a similar state variable structure, based on the Dahl model, common in the engineering community. We inverted the model to fit the time-series and frequency dependent behavior, showing that high amplitude shear wave data could provide information on velocity strengthening or weakening behavior of faults and fractures in situ. This is particularly exciting because these properties determine whether a fault is expected to slide stably or fail seismically in an earthquake. Our lab measurements show the promise of a field technique to map spatial and temporal heterogeneity in the conditions of failure and the frictional properties determining the behavior during these events, vital information for informing fault modeling and seismic hazard assessment.
机译:应力条件,凹凸不平的几何形状和摩擦特性会影响高振幅地震波在岩石裂缝和断层中的传播。实验室证据表明,可以在主动地震勘测中测量这些特性,从而可能为表征这些重要的断裂特性提供途径。为了改善对裂缝机械状态的地球物理约束,我们修改了一种独特的地震频率(〜0.1-100 Hz)仪器,其中还包括关键的环境控制措施(高应变幅度和低有效应力)。通过在一定范围的正应力(0.25至15 MPa)下测量拉伸断裂前后众多岩石的模量和衰减,我们能够估算在等效有效应力条件下裂缝的地震可探测性,并且表明可以通过可重复的地震源监测交配的裂缝。利用一种新颖的压敏薄膜技术,我们将法向应力分布映射到了裂缝表面的凹凸不平处,从而能够表征接触几何形状并估算每个施加的法向应力的实际接触面积。这对于理解和建模受表面几何效应影响的剪切力学至关重要。将过去的工作与岩石物理学,非线性弹性和断层摩擦共同联系起来;我们建议对裂缝或断层进行应变相关软化和摩擦衰减的地震场测量可以限制其原位摩擦特性。通过测量岩石裂缝的模量减小和衰减如何随应变幅度的增加,我们使用简单的局部滑动模型反演了有效粗糙区域(与实际接触面积的测量结果一致)和摩擦系数。该模型还可以外推到完全滑动的凹凸,从而预测失效条件或速率和状态摩擦中的临界滑动距离。由于这些测量是使用频率范围内的振荡剪切应力进行的,因此它们还包含有关动态应变速率相关的摩擦响应的信息。实际上,由于从断裂表面的滑动区域上的静摩擦到动摩擦的过渡,测得的应变振荡表现出强烈的非线性。尽管通常使用速率和状态摩擦来模拟断层动态摩擦,但该公式无法捕获在应变振荡中观察到的滑移的逆转。为了克服这个困难,我们基于工程模型中常见的Dahl模型,使用了另一个具有类似状态变量结构的摩擦参数化方法。我们对模型进行了倒转,以适应时间序列和频率相关的行为,表明高振幅剪切波数据可以提供有关断层和裂缝原位加速或减弱行为的信息。这是特别令人兴奋的,因为这些属性决定了故障是在地震中稳定滑动还是发生地震破坏。我们的实验室测量结果表明,现场技术有望在故障条件下绘制时空异质性,并通过摩擦特性确定这些事件期间的行为,为故障建模和地震危险性评估提供重要信息。

著录项

  • 作者

    Saltiel, Seth A.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Geophysics.;Acoustics.;Mechanics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号