首页> 外文学位 >Three-dimensional measurement of atomic force microscope cantilever deformation to determine the three-dimensional applied force vector.
【24h】

Three-dimensional measurement of atomic force microscope cantilever deformation to determine the three-dimensional applied force vector.

机译:原子力显微镜三维测量悬臂变形以确定三维施加力矢量。

获取原文
获取原文并翻译 | 示例

摘要

The atomic force microscope (AFM) is the instrument of choice for measuring nano- to micro-Newton forces (10-9 to 10-6 Newtons). However, calibration is required for accurate measurements. AFM calibration has been studied for decades and remains a significant focus within the metrological community, in particular at international standards organizations. While progress has been made, there is still much to accomplish as current force calibration techniques yield relative uncertainties (+/-1 standard deviation/mean) of 10%-20%. For example, measuring a force of 500 nN would yield a result between 400-600 nN 68% of the time. The critical issue is the existing AFM metrology, which monitors deformation at a single (spatial) point on a structure that encounters a three-dimensional (3D) force and responds with a 3D deformation. This single-point calibration technique considers only to a limiting set of information, while additional information is available. Similarly, subsequent measurements by the AFM after calibration are restricted to the same limits. As a response, this project aims to improve AFM calibration and use by implementing a new metrological platform and analysis technique.;The new platform incorporates a scanning white light interferometer (SWLI) for 3D cantilever deformation measurements. The SWLI introduces two important changes over standard AFM metrology. First, it provides a multi-point measurement of the backside surface of the cantilever rather than a single-point measurement near the free end. Second, it is a direct displacement sensor which does not infer displacement from the measurement of another variable, such as the surface angle in the optical lever technique. In this study, the AFM is first described with a focus on its use as a force sensor. Then, the new platform design and construction, cantilever imaging tests, and the development of a new force model, which takes advantage of the 3D deflection data, are presented. The new force model addresses many of the challenges associated with traditional calibration strategies. Experimental validation is presented for the cases of "normal" force loading (i.e., perpendicular to the cantilever axis and resulting in bending deformation) and "torsional" loading.
机译:原子力显微镜(AFM)是测量纳米至微米牛顿力(10-9至10-6牛顿)的首选仪器。但是,需要进行校准才能进行准确的测量。 AFM校准已经研究了数十年,并且一直是计量界特别是国际标准组织关注的重点。尽管已经取得了进展,但是随着当前的力校准技术产生10%-20%的相对不确定度(+/- 1标准偏差/均值),仍有许多工作要做。例如,测量500 nN的力将产生68%的时间在400-600 nN之间的结果。关键问题是现有的AFM度量衡,该度量衡监视遇到三维(3D)力并响应3D变形的结构上单个(空间)点的变形。这种单点校准技术仅考虑一组有限的信息,而其他信息可用。同样,AFM在校准后的后续测量也被限制在相同的范围内。作为响应,该项目旨在通过实施新的计量平台和分析技术来改善AFM校准和使用。新平台结合了用于3D悬臂变形测量的扫描白光干涉仪(SWLI)。 SWLI引入了对标准AFM计量的两个重要更改。首先,它提供了悬臂背面的多点测量,而不是自由端附近的单点测量。其次,它是一种直接位移传感器,它不能根据其他变量的测量来推断位移,例如光学杠杆技术中的表面角度。在本研究中,首先介绍了AFM作为力传感器的用途。然后,介绍了新的平台设计和构建,悬臂成像测试以及利用3D变形数据的新力模型的开发。新的力模型解决了与传统校准策略相关的许多挑战。针对“正常”力载荷(即垂直于悬臂轴并导致弯曲变形)和“扭转”载荷的情况,进行了实验验证。

著录项

  • 作者

    Kumanchik, Lee.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 76 p.
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号