首页> 外文学位 >Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data
【24h】

Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

机译:叶片解析模拟和现场数据分析叶片边界层过渡和白天大气湍流对风力发电机性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity.;Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings.;The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P, ≈3 s) and sub-1P scale (< 1 s) response to internal eddy structure. Large amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the airfoil plane, modulated by eddy passage at longer time scales. Generator power is found to respond strongly to large-eddy wind modulations. The experimental data show that internal dynamics of blade boundary layer near the trailing edge is temporally modulated by the nonsteady external ABL flow that was measured at the leading edge, as well as blade generated turbulence motions.;A blade boundary layer resolved CFD study of a GE 1.5MW wind turbine blade is carried out using a hybrid URANS/LES framework to quantify the influence of transition on the blade boundary layer dynamics and subsequent loadings, and also to predict the velocity magnitude data set measured by the trailing edge rakes in the experiment. A URANS based transition model is used as the near-wall model, and its ability to predict nonsteady boundary layer dynamics is assessed for flow over an oscillating airfoil exhibiting varying extents of nonsteady behavior. The CFD study shows that, at rated conditions, the transition and separation locations on the blade surface can be quite dynamic, but the transitional flow has negligible influence on the determination of the separation location and the overall pressure distribution at various blade sections, and subsequently the power output. But this conclusion should be accepted with caution for wind turbines running in off-design conditions (e.g. with significant yaw error, off-design pitch or rapid changes in pitch), where massive separation and dynamic stall may occur. Analysis of the near-blade flow field shows strong three dimensional flow in the inboard regions, which can possibly weaken the chordwise flow in the relatively outboard regions and make them more prone to separation. The trailing edge velocity profiles show qualitative resemblance with some specific cycles observed in the field experiment. The factors leading to the observed differences from the experimental data are also mentioned.
机译:与公用事业规模的风机功能和可靠性相关,本工作着重于利用GE提供的独特数据集,加强我们对能源主导型白天大气湍流和GE 1.5 MW风机旋转叶片之间相互作用的理解。现场实验和计算机模拟在两个保真度水平上;先前的研究表明,对流层下部的稳定状态对湍流涡流的相干结构具有重大影响,并且在风力涡轮机负荷响应方面存在相应的差异。在这项研究中,在GE 1.5 MW风力涡轮机叶片上的三个外叶片部分的前缘和后缘局部测量的时间分辨空气动力学数据以及白天野战中的高频SCADA发电机功率数据与计算机模拟相结合,在数值生成的大气边界层(ABL)流场内模拟GE风力涡轮机,该流场非常接近风力涡轮机在野战中经历的大气湍流。通过结合实验和数值数据集,本研究描述了叶片截面上局部载荷对白天ABL内的非稳态非均匀高能大气湍流涡流的响应特性,其空间尺度与涡轮叶片长度的空间尺度相称。这项研究是同类研究中的第一项,其是针对风力涡轮机野战执行器线和叶片边界层解析的CFD研究,目的是通过实验数据集验证数值预测,并着重于了解风力发电场的影响。实验和执行器线方法数据集确定了在叶片位置量化的三个重要响应时间尺度:能量主导涡流的平流通道(&ap; 25-50 s),叶片旋转( 1P,&amp; 3 s)和1P以下尺度(<1 s)对内部涡流结构的响应。响应于机翼平面中速度矢量倾斜度的时间变化而产生大幅度的短时斜坡状和振荡性负载波动,这是由较长时间尺度上的涡流调节的。发现发电机功率对大涡流风调制有强烈的反应。实验数据表明,后缘附近叶片边界层的内部动力学受到在前缘处测量的非恒定外部ABL流动以及叶片产生的湍流运动的暂时调节。 GE 1.5MW风力涡轮机叶片是使用URANS / LES混合框架进行的,以量化过渡对叶片边界层动力学和后续载荷的影响,并预测实验中后缘耙齿测量的速度幅值数据集。基于URANS的过渡模型用作近壁模型,并评估了显示不稳定程度变化程度的振荡翼型上的流动时,其预测不稳定边界层动力学的能力。 CFD研究表明,在额定条件下,叶片表面上的过渡和分离位置可能非常动态,但是过渡流对分离位置和叶片各个部分的总体压力分布的确定影响很小,随后对功率输出。但是对于在非设计条件下运行的风力涡轮机(例如,存在明显的偏航误差,非设计俯仰或俯仰迅速变化)运行的风力涡轮机,应谨慎接受这一结论,在此情况下可能会发生大量分离和动态失速。对近叶片流场的分析显示,内侧区域存在强烈的三维流动,这可能会削弱相对外侧区域的弦向流动,并使它们更易于分离。后缘速度曲线显示出与田间实验中观察到的某些特定循环的定性相似。还提到了导致观察到的与实验数据差异的因素。

著录项

  • 作者

    Nandi, Tarak Nath.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号