首页> 外文学位 >Combining Quantum Mechanics Calculations with Molecular Modeling to Predict Enzyme Behavior
【24h】

Combining Quantum Mechanics Calculations with Molecular Modeling to Predict Enzyme Behavior

机译:将量子力学计算与分子建模相结合来预测酶的行为

获取原文
获取原文并翻译 | 示例

摘要

Chapter 1.;Sesquiterpenoids comprise a class of terpenoid natural products with thousands of compounds that are highly diverse in structure, generally containing a polycyclic carbon backbone that is constructed by a sesquiterpene synthase. However, for the vast majority of these enzymes the productive binding orientation of the intermediate carbocations has remained unclear. In this work, a method that combines quantum mechanics and computational docking is used to generate an all-atom model of every putative intermediate formed in the context of the enzyme active site for tobacco epi-aristolochene synthase (TEAS). This method identifies a single pathway that links the first intermediate to the last, enabling us to propose the first high-resolution model for the reaction intermediates in the active site of TEAS, providing testable predictions both experimentally and computationally.;Chapter 2.;For a variety of sesquiterpene synthases a neutral intermediate is made in the mechanism. This intermediate must then be re-ionized to restart the carbocation cascade of product formation, but the source of this protonation in the active site isn't understood. Building on the models developed in our lab for epi-aristolochene synthase a variety of potential proton sources were examined explicitly, including an alternate cysteine (C440), a potential active site bound water and no constraint to any proton source at all were all examined. From these results a variety of point mutants were suggested and are being tested by our collaborator.;Chapter 3.;Terpene synthases is a family of enzyme which takes linear polyisoprenyl diphosphates and creates complex, polycyclic carbon backbones via a carbocation intermediates. To accommodate this chemistry, the active site are lines with alkyl and aromatic sidechain, which are thought to play a role in sequestering the reactive intermediates until the final product is made. This provides a unique challenge to modelers, as correctly predicting the correcting binding mode of a greasy substrate in a greasy pocket is a huge challenge. Here we report our answer to the said challenge: TerDockin (short for terpene docking). A recipe of protocols to help predict the carbon skeletons orientation in the active site relative to the diphosphate group. Using this recipe for bornyl diphosphate synthase has allowed the method to reproduce three known experimental outcomes, exclude very similar products the enzyme doesn't produce and is partially consistent with previous modeling studies. This system serves as a model to illustrate the potential power of TerDockin as a starting point for other higher theory (i.e. QM/MM) terpene synthase calculations and sets the stage for the rational engineering of this family of enzymes.;Chapter 4.;The TerDockin method has only been applied to type 1 terpene synthase. Here we expand TerDockin to a type 2 terpene synthase. In order to accomplish this the mechanism for product formation of the enzyme Rv3377c was identified using quantum mechanics. With the intermediates identified the TerDockin recipe can now be applied and allow for the prediction of the catalytically relevant orientation.;Chapter 5.;The rapidly growing appreciation of enzymes' catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI), and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme's active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly alpha,beta-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.
机译:第1章:倍半萜类化合物包括一类萜类天然产物,其数千种化合物的结构高度不同,通常包含由倍半萜烯合酶构建的多环碳骨架。然而,对于这些酶中的绝大多数,中间碳阳离子的生产性结合方向仍然不清楚。在这项工作中,一种将量子力学和计算对接相结合的方法用于生成在烟草表位通气的合成酶(TEAS)的酶活性位点的背景下形成的每个假定中间体的全原子模型。该方法确定了一条将第一个中间体连接到最后一个中间体的单一途径,使我们能够为TEAS活性位点中的反应中间体提出第一个高分辨率模型,从而提供实验和计算上可检验的预测。该机制制备了多种倍半萜烯合酶中性中间体。然后必须将该中间体重新电离,以重新开始形成产品的碳正离子级联反应,但尚不清楚活性位点中质子化的来源。在我们实验室中为表皮抗气质合成酶开发的模型的基础上,明确检查了各种潜在的质子源,包括替代的半胱氨酸(C440),潜在的活性位点结合水以及对任何质子源都没有任何约束。根据这些结果,提出了多种点突变体,并由我们的合作伙伴进行测试。;第3章;萜烯合酶是一类酶,它吸收线性聚异戊二烯基二磷酸并通过碳正离子中间体产生复杂的多环碳骨架。为了适应这种化学反应,活性位点是带有烷基和芳族侧链的线,它们被认为在螯合反应性中间体直到最终产物形成中起作用。这给建模人员带来了独特的挑战,因为正确预测油腻袋中油性基质的校正结合模式是一项巨大的挑战。在这里,我们报告对上述挑战的回答:TerDockin(萜烯对接的缩写)。协议的配方,可帮助预测相对于二磷酸酯基团的活性部位的碳骨架取向。使用此配方生产冰片基二磷酸合酶,该方法可以重现三个已知的实验结果,排除该酶不产生的非常相似的产物,并且与先前的建模研究部分一致。该系统可作为模型来说明TerDockin作为其他高级理论(例如QM / MM)萜烯合酶计算的起点的潜在能力,并为合理设计该酶家族奠定了基础。;第4章; TerDockin方法仅适用于1型萜烯合酶。在这里,我们将TerDockin扩展为2型萜烯合酶。为了实现这一点,使用量子力学鉴定了Rv3377c酶产物形成的机理。鉴定出中间体后,就可以使用TerDockin配方,并可以预测催化相关的方向。;第5章;对酶的催化和底物混杂度的迅速增长的认识可能会导致它们在化学合成领域的广泛应用和工业生物技术。在这里,我们探讨了烯酰基-酰基载体蛋白还原酶(通常称为FabI)的底物混杂性,以及该混杂性是固有反应性和酶活性位点的几何要求的函数的原因。我们证明这些酶催化多种底物,特别是α,β-不饱和醛的还原。此外,我们证明了量子机械氢化物亲和力计算和分子对接的组合可用于快速分类FabI可用作底物的化合物。此处的结果为FabI催化决定因素提供了新见解,并为开发新的药物发现,有机合成和新型生物催化剂测定方法奠定了基础。

著录项

  • 作者

    O'Brien, Terrence Edward.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Chemistry.;Biochemistry.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号