首页> 外文学位 >Advanced optimization tools for the design and retrofit of process plants water networks.
【24h】

Advanced optimization tools for the design and retrofit of process plants water networks.

机译:用于设计和改造加工厂供水网络的高级优化工具。

获取原文
获取原文并翻译 | 示例

摘要

Water is extensively used in industry and due to its increasing cost and the continuous quality deterioration of the available freshwater sources; its use is becoming also a cost concern in industries. An alternative to reduce costs associate to water consumption is the integration of the water system through reuses and recycles. This problem is often called Water Allocation Problem (WAP) and has been studied in the past three decades and several approaches to solve it have been presented. A comprehensive review of methods presented up to 2000 is given by Bagajewicz (2000); additional overviews can be found in a few books (Mann and Liu, 1999; Sikdar and El-Halwagi, 2001).;The methods to solve the WAP can be divided into two big classes: those based on mathematical programming, and those based on graphical, heuristic or algorithmic methods. The most promising class is the one based on mathematical programming, which is being increasingly used, especially because of the inability of graphical, heuristic or algorithmic procedures to effectively provide rigorous solutions to multiple contaminant problems. Additionally, more elaborate objective functions (cost, number of connections, etc.) are easier to handle using mathematical programming approaches.;Although this problem has been studied for three decades, some conceptual issues have been overlooked. The WAP first defined by Takama et al.(1980) considered two water subsystems commonly seen in the industry, the water-using subsystem and the wastewater treating subsystem, but left the water pre-treatment subsystem out of the systems integration. This work proves that the absence of this third subsystem has a strong effect on freshwater consumption targets and, in many cases, the use of the former definition creates systems that are "impossible" to reach zero liquid discharge.;In the mathematical optimization group, approaches using LP, NLP, MILP, and MINLP have been presented. Aside from the linear models presented, which are only able to find the optimum solution for particular situations, the biggest challenge on the mathematical procedures is to overcome the difficulties generated by the non-linear and non-convex terms that arise from the contaminants balance (mixers and splitters). Such problems require good start points to find a feasible solution and most of the available solvers cannot guarantee global optimality if a solution is found. On the other hand, methodologies based on mathematical optimization are much easier to describe the problem in more detail and thus more complex problems can be approached.;Although the integrated water system problem has been solved by other authors for minimum freshwater consumption and cost (Takama et al., 1980; Alva-Argaez et al., 1998; Huang et al., 1999; Karuppiah and Grossmann, 2006; Bagajewicz and Faria, 2009; Faria and Bagajewicz, 2009), robust methods to find optimum and sub-optimum solutions, present the option of investigating alternative solutions and are able to analyze the problem from different perspectives are needed. To overcome this drawback, different global optimization methods to solve the WAP using the complete water system are presented. Additionally, a method to find several alternative solutions is described and a planning model is suggested.
机译:水由于其成本增加和可用淡水源的质量持续下降而在工业中得到广泛使用;在工业中,其使用也成为成本问题。减少与水消耗相关的成本的另一种方法是通过重复利用和循环利用来整合水系统。这个问题通常称为水分配问题(WAP),在过去的三十年中已经进行了研究,并提出了几种解决方法。 Bagajewicz(2000)对2000年以前提出的方法进行了全面回顾。可以在几本书中找到其他概述(Mann和Liu,1999; Sikdar和El-Halwagi,2001)。解决WAP的方法可以分为两大类:基于数学编程的方法和基于WAP的方法。图形,启发式或算法方法。最有前途的一类是基于数学编程的类,这一类类正被越来越多地使用,尤其是由于无法通过图形,启发式或算法程序有效地为多种污染物问题提供严格的解决方案。此外,使用数学编程方法更易于处理更复杂的目标函数(成本,连接数等)。;尽管已经研究了这个问题三十年,但一些概念性问题却被忽略了。 Takama等人(1980)首先定义的WAP考虑了行业中常见的两个水子系统,即用水子系统和废水处理子系统,但将水预处理子系统排除在系统集成之外。这项工作证明,缺少第三个子系统会对淡水消耗目标产生重大影响,并且在许多情况下,使用前一个定义将创建“不可能”达到零液体排放的系统。在数学优化组中,已经提出了使用LP,NLP,MILP和MINLP的方法。除了提出的线性模型(只能为特定情况找到最佳解决方案)外,数学程序的最大挑战是克服污染物平衡引起的非线性和非凸项所产生的困难(混合器和分离器)。此类问题需要良好的起点来找到可行的解决方案,并且如果找到解决方案,则大多数可用的求解器不能保证全局最优。另一方面,基于数学优化的方法更容易更详细地描述问题,因此可以解决更复杂的问题。;尽管其他作者已经解决了综合水系统问题,以最大程度地减少了淡水消耗和成本(Takama等人,1980年; Alva-Argaez等人,1998年; Huang等人,1999年; Karuppiah和Grossmann,2006年; Bagajewicz和Faria,2009年; Faria和Bagajewicz,2009年),是找到最优和次最优的可靠方法。解决方案,提供研究替代解决方案的选项,并且需要能够从不同角度分析问题。为了克服此缺点,提出了使用完整供水系统解决WAP的不同全局优化方法。此外,描述了一种找到几种替代解决方案的方法,并提出了一个计划模型。

著录项

  • 作者

    Faria, Debora Campos de.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 290 p.
  • 总页数 290
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号