首页> 外文学位 >Experimental and computational investigation of inlet temperature profile and cooling effects on a one and one-half stage high-pressure turbine operating at design-corrected conditions.
【24h】

Experimental and computational investigation of inlet temperature profile and cooling effects on a one and one-half stage high-pressure turbine operating at design-corrected conditions.

机译:在设计校正的条件下运行的一台和半台高压涡轮机的入口温度曲线和冷却效果的实验和计算研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents for the first time measurements and analysis of the flow features of a high-pressure one and one-half stage turbine operating at design corrected conditions with vane and purge cooling as well as vane inlet temperature profile variation. A concurrent experiment at the Gas Turbine Laboratory provided the first set of pressure and heat-flux measurements for a fully-cooled turbine (vane row cooled and blade row cooled) operating at design corrected conditions [4, 5], but the more detailed data investigating the influence of different cooling flows and vane inlet temperature profiles are still being analyzed. The experimental program presented in this dissertation contains data to determine the influence of each cooling region and temperature profile on the flow over the uncooled blade by adjusting the cooling flow rates from the vane and from the purge cavity (between the vane and the rotor disk) for experiments with a uniform, radial, or hot streak inlet temperature profile.;The data set presented here represents the first set of its kind to utilize variation of cooling flow rates through the same geometry to identify the regions of cooling influence on the downstream blade row. The influence of cooling on the pressure surface of the uncooled blade is much smaller than on the suction surface, but a local area of influence can be observed near the platform.;This is also the first experimental program to investigate the influence of vane inlet temperature profile on a cooled turbine operating at design corrected conditions. The vane inlet temperature profile has a substantial effect on the temperature measured at the blade leading edge and the Stanton Numbers deduced for the uncooled blade airfoil. While the temperature profile is slightly reshaped passing through the vane, a radial profile introduced at the vane inlet can still be clearly measured at the blade.;A concurrent effort to predict the blade leading edge and platform temperatures for the uncooled portions of this experiment using the commercial code FINE/Turbo is also presented. This investigation is not intended as a detailed computational study but as a check of current code implementation practices and a sanity check on the data. It is found that while reasonable agreement can be achieved in many regions, current practices used for generating accurate surface-pressure predictions are not sufficient to create accurate temperature predictions for all locations. The best predictions are generated using isothermal wall boundary conditions with the nonlinear harmonic method. This is a novel prediction type that could only be performed using a development version of FINE/Turbo. Improvements in prediction accuracy will require a more dense computational mesh as well as better definition of the wall temperature distribution and inlet temperature profile. (Abstract shortened by UMI.)
机译:本文首次介绍了在设计校正条件下运行的高压单级和半级涡轮机的流动特性,并进行了叶片和吹扫冷却以及叶片入口温度曲线变化的分析。燃气轮机实验室的一项并行实验为在设计校正条件下运行的全冷式涡轮机(叶片排冷却和叶片排冷却)提供了第一组压力和热通量测量,但更详细的数据调查不同冷却流量和叶片入口温度曲线的影响仍在分析中。本文介绍的实验程序包含的数据可通过调节来自叶片和吹扫腔(叶片和转子盘之间)的冷却流量来确定每个冷却区域和温度曲线对未冷却叶片上的流动的影响。适用于具有均匀,径向或热条纹入口温度曲线的实验。此处显示的数据集代表该类型的第一组,其利用通过相同几何形状的冷却流量变化来确定冷却对下游叶片的影响区域行。冷却对未冷却叶片压力表面的影响要比吸力表面小得多,但是可以在平台附近观察到局部影响区域;这也是研究叶片入口温度影响的第一个实验程序在经过设计校正的条件下运行的冷却涡轮机的轮廓。叶片入口温度曲线对叶片前缘处测得的温度和未冷却的叶片翼型推导出的斯坦顿数有很大影响。尽管温度曲线经过叶片后略微改变了形状,但仍可以在叶片上清楚地测量叶片入口处引入的径向轮廓;同时努力使用本实验预测未冷却部分的叶片前缘和平台温度还提供了商业代码FINE / Turbo。这项调查不是为了进行详细的计算研究,而只是为了检查当前的代码实现惯例以及对数据进行完整性检查。已经发现,尽管可以在许多地区达成合理的协议,但是用于生成精确的表面压力预测的当前实践不足以为所有位置创建精确的温度预测。使用等温壁边界条件和非线性谐波方法可得出最佳预测。这是一种新颖的预测类型,只能使用FINE / Turbo的开发版本来执行。预测精度的提高将需要更密集的计算网格以及对壁温分布和入口温度曲线的更好定义。 (摘要由UMI缩短。)

著录项

  • 作者

    Mathison, Randall Melson.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 403 p.
  • 总页数 403
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号