首页> 外文学位 >Using soil-borne polycyclic aromatic hydrocarbons (PAHs) and organic carbon in soil for projecting pollution states of PAHs in ambient air.
【24h】

Using soil-borne polycyclic aromatic hydrocarbons (PAHs) and organic carbon in soil for projecting pollution states of PAHs in ambient air.

机译:使用土壤中的土壤中多环芳烃(PAHs)和有机碳来预测环境空气中PAHs的污染状态。

获取原文
获取原文并翻译 | 示例

摘要

Polycyclic Aromatic Hydrocarbons (PAHs) are of environmental concern due to their ubiquitous nature, long-range transport, long half-lives, and toxicity. PAHs enter the environment as a consequence of incomplete combustion and cause adverse health effects. Because they are omnipresent pollutants, PAH distribution is not only a local issue, but also a global issue. Therefore, monitoring PAHs in ambient air and identifying their sources and distribution patterns have tremendous importance in assessing public health. However, sampling and analyzing airborne PAHs with conventional methods is time consuming and costly. In addition, an active sampling method remains unfeasible in many cases because it requires electrical power to operate. To promote inexpensive and simple PAH analysis method, this study investigated the feasibility of local soils as passive samplers to predict ambient air pollution states.;PAH studies are abundant in the literature; however, studies reporting PAHs in semi-arid or arid conditions are scarce. The fate and transport of PAHs in semi-arid or arid regions may differ from the current knowledge that has emerged from many studies conducted in temperate, cold, and tropical regions. This study fills the gap in our knowledge and contributes a better understanding of PAH behavior in semi-arid and arid regions.;A total of 30 soil samples and 33 air samples were simultaneously collected in six sampling sites in the arid region of El Paso, TX, in winter and summer of 2009. Soil samples were fractioned into coarse (125microm--500microm) and fine (<125microm), rendering four soil sample groups: summer coarse, summer fine, winter coarse, and winter fine. Soil organic matter (SOM) content was also analyzed for each group. Statistical analyses were performed using SPSS 15.0 and 17.0 (SPSS Inc.). The principal approaches and findings are listed below: (1) Pearson correlation analyses showed that soil-borne PAH concentrations and SOM levels were statistically correlated. For the winter coarse fraction set, all PAH ring number groups showed a significant correlation, and the three-ring group gave the highest r-squared value, 0.735, with a linear regression model. However, for the fine fraction set from the summer samples, no ring group exhibited a correlation. (2) Fitting models were sought on the relations of PAH levels in coarse-fine fractions. Sixteen PAHs were categorized based on the aromatic ring number in their chemical structure. Quadratic models exhibited higher r-squared values than a linear model in all groups, indicating different PAH sorption kinetics and indefinite relations occurring in soil with different particle size. (3) Soil-borne PAHs were studied on correlations with airborne PAHs and SOM. Statistical analyses underscored soil grain size as a seminal factor on the correlation. In addition, soil-borne PAHs and airborne PAH levels showed a larger correlation coefficient with propinquity to the soil-sampling event in summer coarse fractions while a relatively smaller correlation existed in winter samples. The results indicate that high temperature accelerates soil-borne PAH turnover in environmental media, that seasonal variation of PAH residence time occurs, and that soil-borne and airborne PAHs achieve the equilibrium state faster in summer than in winter. (4) Diagnostic ratios of isomeric PAHs and principal component analyses on 16 PAHs were also compared between soil-borne and airborne PAHs. Pyrogenic and petrogenic source inputs were observed in both media with a greater seasonal variation in airborne PAHs. Nonetheless, the comparison confirmed that soil-borne PAHs do not represent freshly emitted PAHs in the ambient air, implying possible time dependent factors affecting on air-soil flux. This result also demonstrated that meticulous data interpretations including soil grain size and sampling season are required to apportion sources with regard to applying the popular diagnostic ratio method on soil-borne PAHs. (5) Although statistically significant correlations were found between soil-borne PAH levels and airborne PAH levels, multiple linear regression analyses with other factors including soil organic matter, temperature, and KOA yielded poor r-squared values on regression models: no efficient regression model was obtained. The result suggests that soil may not be a suitable passive sampler for predicting airborne PAH levels in urban environment where complex sources are involved. (6) Lastly, this research adopted green chemistry practice. A simple, cost effective, and environmentally friendly sample preparation method for determination of PAH in solid samples was proposed. The optimized method, which uses ultrasonic extraction method and acetone/hexane mixture (2:3 and 1:1 v/v), demonstrated satisfactory recoveries ranging from 63.3% (indeno[1,2,3-cd]pyrene) to 122% (benzo[b]fluoranthene) on the U.S. EPA 16 PAHs in solid samples (NIST SRM 1649a).
机译:多环芳烃(PAHs)由于其无处不在的性质,远距离运输,长半衰期和毒性而受到环境关注。多环芳烃由于不完全燃烧而进入环境,并对健康造成不利影响。由于PAH的分布无处不在,因此它不仅是一个本地问题,而且是一个全球问题。因此,监测周围空气中的多环芳烃并确定其来源和分布方式在评估公共卫生方面具有极其重要的意义。但是,使用常规方法对机载PAH进行采样和分析既费时又费钱。另外,在许多情况下,主动采样方法仍然是不可行的,因为它需要电功率才能工作。为了推广廉价,简单的PAH分析方法,本研究调查了作为被动采样器的当地土壤预测环境空气污染状态的可行性。然而,很少有研究报道半干旱或干旱条件下的PAHs。在半干旱或干旱地区,PAHs的命运和运输方式可能与在温带,寒冷和热带地区进行的许多研究中得出的最新知识有所不同。这项研究填补了我们的知识空白,并有助于更好地了解半干旱和干旱地区的PAH行为。在El Paso干旱地区的六个采样点同时采集了30个土壤样品和33个空气样品。德克萨斯州,2009年冬季和夏季。将土壤样品分为粗颗粒(125微米--500微米)和细颗粒(<125微米),分为四个土壤样品组:夏季粗,夏季细,冬季粗和冬季细。还对每组的土壤有机质(SOM)含量进行了分析。使用SPSS 15.0和17.0(SPSS Inc.)进行统计分析。主要方法和发现如下:(1)Pearson相关分析表明,土壤传播的PAH浓度和SOM水平具有统计相关性。对于冬季粗分数集,所有PAH环数组均显示出显着相关性,而三环组的线性回归模型给出的r平方值最高,为0.735。但是,对于夏季样品中的精细组分,没有环基团表现出相关性。 (2)在粗细级分中寻找多环芳烃含量关系的拟合模型。根据其化学结构中的芳环数将16种PAH进行了分类。在所有组中,二次模型均显示出比线性模型更高的r平方值,表明在不同粒径的土壤中PAH的吸附动力学不同,并且存在不确定的关系。 (3)研究了土壤传播的PAHs与空气传播的PAHs和SOM的相关性。统计分析强调土壤粒度是相关性的一个重要因素。此外,土壤传播的多环芳烃和空气传播的多环芳烃含量与夏季粗粒级土壤采样事件的相关系数较大,而冬季样品的相关系数相对较小。结果表明,高温加速了环境介质中土质PAH的转化,发生了PAH停留时间的季节性变化,并且土质和空运PAHs在夏季比冬季更快地达到平衡状态。 (4)还比较了土壤和空气传播的PAHs的同分异构PAHs的诊断率和主成分分析。在两种介质中都观察到热源和岩石源的输入,其机载多环芳烃的季节性变化更大。尽管如此,该比较证实了土壤中的多环芳烃并不能代表环境空气中的新鲜散发的多环芳烃,这暗示着影响空气-土壤通量的可能与时间有关的因素。该结果还表明,对于在土壤传播的PAHs上应用流行的诊断比率方法,需要对包括土壤粒度和采样季节在内的细致数据解释进行分配。 (5)尽管在土壤传播的PAH水平和空气传播的PAH水平之间存在统计学上的显着相关性,但对其他线性回归分析以及其他因素(包括土壤有机质,温度和KOA)在回归模型上得出的r平方值很差:没有有效的回归模型获得了。结果表明,在涉及复杂来源的城市环境中,土壤可能不是适合预测空气中PAH水平的被动采样器。 (6)最后,本研究采用绿色化学实践。提出了一种测定固体样品中多环芳烃的简单,经济,环保的样品制备方法。该优化方法采用超声提取方法和丙酮/己烷混合物(2:3和1:1 v / v),回收率令人满意,范围从63.3%(茚并[1,2,3-cd] to)到122% (EPA [S] 1649a)中的US EPA 16 PAH上的(苯并[b]荧蒽)。

著录项

  • 作者

    Yamaguchi, Chika.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Environmental Sciences.;Atmospheric Chemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号