首页> 外文学位 >Compensation of shape change artifacts and spatially-variant image reconstruction problems in electrical impedance tomography.
【24h】

Compensation of shape change artifacts and spatially-variant image reconstruction problems in electrical impedance tomography.

机译:在电阻抗层析成像中补偿形状变化伪影和空间变异图像重建问题。

获取原文
获取原文并翻译 | 示例

摘要

Electrical Impedance Tomography (EIT) is an imaging modality in which electrical conductivity within the object is estimated from surface voltage measurements. Conductivity images in EIT can provide clinically significant information, since conductivity changes are closely related with physiological changes inside the body. Clinical applications of EIT are non-invasive, cost-effective and simple to apply to patients. Despite the above advantages, performance of EIT systems is affected by the uncertainties pertaining to patient's body shape change and spatial variability of the image reconstruction problem. In this research, we identify these uncertainties to be the major sources of reconstruction errors.;In EIT image reconstruction, the surface shape of an image object is often assumed to be known. In clinical environments, shape information is not always available. Discrepancies between the assumed and actual shapes can result in errors that may have clinical significance. We suggest an algorithm that estimates domain shapes for the use in 2D EIT. We investigated elliptical boundary distortions of a unit disk object as changes from circular to elliptical geometries, defined using the Joukowski transformation. Boundary shapes of a real domain were then estimated as ellipses after investigating the spatial characteristics of image artifacts caused by shape changes. Our method was tested with boundary voltage measurements obtained using a full array electrode layout from elliptical simulation and phantom models containing a small disk anomaly at various positions. We found that the proposed method could estimate elliptical shape changes with relatively small error.;The EIT image reconstruction problem is spatially-variant, meaning that the same anomaly placed at different locations within an image plane may produce different reconstruction signatures. Correcting errors due to this spatial variability should improve reconstruction accuracy. We present methods to normalize the spatially-variant image reconstruction problem by equalizing the system Point Spread Function (PSF). In order to equalize PSF, we used blurring properties of the system derived from the sensitivity matrix. We compared three mathematical schemes: Pixel-Wise Scaling (PWS), Weighted Pseduo-Inversion (WPI) and Weighted Minimum Norm Method (WMNM) to normalize reconstructions. The Quantity Index (QI), defined as the integral of pixel values of an EIT conductivity image, was considered in investigating spatial variability. The QI values along with reconstructed images are presented for cases of 2D full array and hemiarray electrode topologies. We found that a less spatially-variant QI could be obtained by applying normalization methods to conventional regularized reconstruction methods such as Truncated Singular Value Decomposition (TSVD) and WMNM. The normalization methods were tested with boundary voltage measurements obtained from simulation disk models containing a smaller disk anomaly, and cylindrical phantom models with anomalies of various volumes placed at various locations within the electrode plane. For anomalies of the same volume, QI error caused by spatial variability was reduced the most among the tested methods when WMNM normalization was applied to WMNM regularized reconstructions for both hemiarray and full array cases.;The use of the blurring properties was further investigated in hemiarray EIT, where the electrodes cover only one half of the object boundary. Boundary measurements are relatively not sensitive to the conductivity anomaly that lies far away from electrodes, and the anomaly may be invisible or undetected in the images reconstructed using conventional methods. We propose a WPI method to enhance sensitivity in the region distant from the electrodes. The method was tested with data obtained from a 2D circular object. A smaller disk anomaly was varied in location within the object. The WPI method detected anomalies with relatively small errors for the hemiarray case.
机译:电阻层析成像(EIT)是一种成像方式,其中可以根据表面电压测量值估算物体内的导电率。 EIT中的电导率图像可以提供具有临床意义的信息,因为电导率的变化与体内的生理变化密切相关。 EIT的临床应用是非侵入性的,具有成本效益的,并且易于应用于患者。尽管具有上述优点,但EIT系统的性能仍受与患者身体形状变化和图像重建问题的空间可变性有关的不确定性影响。在这项研究中,我们将这些不确定性确定为重建误差的主要来源。在EIT图像重建中,通常假定图像对象的表面形状是已知的。在临床环境中,形状信息并非总是可用。假定形状与实际形状之间的差异可能会导致可能具有临床意义的错误。我们建议使用一种算法来估算域形状,以用于2D EIT。我们研究了使用Joukowski变换定义的单位圆盘对象在从圆形到椭圆形几何形状变化时的椭圆边界变形。在研究由形状变化引起的图像伪像的空间特征之后,然后将实域的边界形状估计为椭圆。我们的方法通过边界电压测量进行了测试,该边界电压测量是使用椭圆阵列的全阵列电极布局和幻影模型获得的,该幻影模型在各个位置都包含一个小的磁盘异常。我们发现,该方法可以估计椭圆形状的变化,误差相对较小。EIT图像重建问题在空间上是变化的,这意味着放置在图像平面内不同位置的相同异常可能会产生不同的重建特征。由于这种空间可变性而导致的校正误差将提高重建精度。我们提出了通过均衡系统点扩散函数(PSF)来规范化空间变异图像重建问题的方法。为了使PSF相等,我们使用了从灵敏度矩阵得出的系统的模糊特性。我们比较了三种数学方案:像素明智缩放(PWS),加权伪反演(WPI)和加权最小范数方法(WMNM)以对重构进行归一化。在研究空间变异性时考虑了数量指数(QI),该指数定义为EIT电导率图像的像素值的整数。针对2D全阵列和半阵列电极拓扑的情况,显示了QI值以及重建的图像。我们发现,通过将归一化方法应用于常规正则化重构方法(例如截断奇异值分解(TSVD)和WMNM),可以获得较小的空间变异QI。使用边界电压测量值对归一化方法进行了测试,该边界电压测量值是从包含较小磁盘异常的模拟磁盘模型和圆柱体模型中获得的,该模型具有在电极平面内各个位置放置的各种体积的异常。对于相同体积的异常,当将WMNM归一化应用于半阵列和全阵列情况下的WMNM正则化重构时,由空间变异性引起的QI误差在测试方法中减少得最多。 EIT,电极仅覆盖对象边界的一半。边界测量对于远离电极的电导率异常相对不敏感,并且在使用常规方法重建的图像中,该异常可能不可见或未被检测到。我们提出了一种WPI方法来增强远离电极的区域中的灵敏度。使用从2D圆形对象获得的数据测试了该方法。较小的磁盘异常在对象内的位置有所不同。对于半阵列情况,WPI方法检测到具有相对较小误差的异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号